摘要:对实现更可持续制造和循环经济模型的高性能生物材料的需求正在显着增长。卡夫木质素(KL)是一种丰富且功能高的芳香/酚类生物聚合物,是纸浆和造纸工业的主要侧产品,以及最近的第二代生物填充物。在这项研究中,将KL纳入了基于双苯酚A(DGEBA)的二甘油乙醚(DGEBA)和胺固化剂(Jeffamine D-230)的玻璃状环氧系统中,该系统被用作固化剂的部分替换和DGEBA前固化剂和DGEBA前添加剂或反应性添加剂。A 由原始的(未修饰)KL替换为14 wt。%,而与Neat Epoxy Polymer相比,高达30 wt的KL-氧基复合材料具有相似的热力学特性,并且具有相似的热力学特性,并且具有相似的热力学特性,并且具有显着增强的抗氧化特性。 此外,还研究了KL粒径的效果。 球铣削的牛皮木蛋白(BMKL,10 µm)和纳米林蛋白(NLH,220 nm)在球铣削和超声化后获得,并在同一环氧系统中作为添加剂进行了研究。 显着改善的分散体和热机械特性,主要用纳米林蛋白获得,这些纳米林蛋白表现出完全透明的木质素 - 环氧复合材料,张力强度较高,储存模量和玻璃转变温度,即使在30wt。%的载荷下也是如此。 最后,KL木质素是糖基化(GKL)并用作基于生物的环氧前聚合物,可达到高达38 wt的基于化石的DGEBA的38 wwt。%替代。 GKL复合材料表现出改善的热机械性能和透明度。由原始的(未修饰)KL替换为14 wt。%,而与Neat Epoxy Polymer相比,高达30 wt的KL-氧基复合材料具有相似的热力学特性,并且具有相似的热力学特性,并且具有相似的热力学特性,并且具有显着增强的抗氧化特性。此外,还研究了KL粒径的效果。球铣削的牛皮木蛋白(BMKL,10 µm)和纳米林蛋白(NLH,220 nm)在球铣削和超声化后获得,并在同一环氧系统中作为添加剂进行了研究。显着改善的分散体和热机械特性,主要用纳米林蛋白获得,这些纳米林蛋白表现出完全透明的木质素 - 环氧复合材料,张力强度较高,储存模量和玻璃转变温度,即使在30wt。%的载荷下也是如此。最后,KL木质素是糖基化(GKL)并用作基于生物的环氧前聚合物,可达到高达38 wt的基于化石的DGEBA的38 wwt。%替代。GKL复合材料表现出改善的热机械性能和透明度。使用NMR,TGA,GPC和DLS技术对所有木质素进行了广泛的表征,以相关并证明环氧聚合物表征的结果。
天然纤维复合材料对湿热环境(湿度和服务温度升高)高度敏感。可以通过使用纳米材料作为组成的增材制造来增强此类复合材料的长期行为。因此,这项研究研究了杂交亚麻纤维增强的环氧复合材料的机械性能,其为0%,0%,0.5%,0.5%,1%和1.5%的石墨烯纳米颗粒在暴露于1000、2000,3000小时的相对湿度为98%之后,在20°C和60°C和60°C C. C. C. c. comp的相对湿度为98%。通过弯曲和层间剪切测试。湿热调节模拟。这项研究的结果表明,石墨烯纳米颗粒在减少水分吸收和改善湿透性调节后的机械性能中起着重要作用。与没有石墨烯纳米颗粒的样品相比,杂化复合材料的弯曲和层间剪切强度增加了0.5%,1.0%和1.5%的石墨烯增加了77.7%,72.0%,77.1%和77.1%,以及75.5%,70.6%和73.5%,C。由于水分扩散到亚麻纤维和树脂塑料的燃料中,杂化复合材料随着调节温度和暴露持续时间的升高而增加。尽管如此,由于其在基质中的分布更好,因此发现0.5%石墨烯纳米颗粒在保留老化杂化复合材料的机械性能方面是最佳的。加速的测试结果表明,在在湿热环境中服役100年后,杂种复合材料分别可以保留至少57%和49%的弯曲和层间剪切强度,在30℃的温度下,澳大利亚的平均年度温度在30°C的温度下散发出来。
在过去的几十年里,人们投入了大量的时间和精力来提高环氧模塑料 (EMC) 封装的半导体封装翘曲的可预测性。借助先进的计算力学技术和计算硬件,人们可以模拟几乎任何类型的封装。数值预测所需的热机械性能,包括热膨胀系数 (CTE)、玻璃化转变温度 (T g ) 以及随温度和时间变化的粘弹性能,通常通过热机械分析仪 (TMA) 和动态机械分析仪 (DMA) 等商用工具进行测量。此外,可以使用基于阴影莫尔条纹和数字图像相关 (DIC) 的商用工具轻松测量随温度变化的翘曲。尽管付出了巨大的努力,但准确的预测仍然是一项艰巨的任务。EMC 通常占据封装体积的很大一部分,因此在封装翘曲行为中起着重要作用。这篇评论文章研究了关键的 EMC 属性对翘曲行为的影响。基于文献中报告的数据和分析,本文讨论了导致预测仍然困难的三个潜在原因,并讨论了应采取哪些措施才能将预测能力达到所需水平。
摘要:迫切需要找到可持续的方法来生产不含双酚 A 的高性能热固性材料,用于太空或航空航天领域等特定应用。在本研究中,选择了芳香族三环氧物三(4-羟基苯基)甲烷三缩水甘油醚 (THPMTGE),通过与酸酐共聚来生成高交联网络。事实上,制备的热固性材料的凝胶含量 (GC) 约为 99.9%,玻璃化转变值介于 167–196 ◦ C 之间。通过 DMA 分析检查的热机械性能表明材料非常坚硬,E ′ 约为 3–3.5 GPa。热固性材料的刚性由杨氏模量值确认,杨氏模量值介于 1.25–1.31 GPa 之间,断裂伸长率约为 4–5%,拉伸应力约为 35–45 MPa。 TGA 分析强调了非常好的热稳定性,优于 340 ◦ C。还评估了极限氧指数 ( LOI ) 参数,显示了具有良好阻燃性能的新材料的开发。
免疫治疗的临床应用是肿瘤治疗的里程碑,但部分患者对免疫治疗反应不佳。环氧合酶-2(COX-2)在多种癌细胞中均有表达,且与预后不良相关。它是前列腺素E2(PGE2)的关键酶,已被证明能促进肿瘤细胞的发展、增殖和转移。近期研究进一步发现,肿瘤微环境(TME)中的PGE2通过多种途径主动触发肿瘤免疫逃逸,导致免疫治疗反应不佳。COX-2抑制剂被认为可以抑制PGE2的免疫抑制,并可能增强或逆转免疫检查点抑制剂(ICI)的反应。本综述深入探讨了COX-2/PGE2信号在免疫抑制性TME中的机制,并总结了其在肿瘤治疗中的临床应用和试验。
近年来随着研究的深入,高导热复合材料多是通过构建三维网络结构来获得的。14,36制备三维CF骨架的常用方法有简单的共混法、37,38化学气相沉积法(CVD)、39电泳沉积法、40,41静电锁定法42-44和冷冻干燥取向法45,46然而在共混工艺和CVD作用下,CF细丝通常随机、无序地分布在前驱体基体中。具有无取向CF结构的复合材料不易实现连续的热传输路径。为了构建连续的导热网络结构,提高CF的取向度已被证明是一种有效的手段。13众所周知
用户通知尊敬的用户,非常感谢您购买了脉搏OXI仪表(以下简称为设备)。本手册是根据理事会指令MDD93/42/EEC编写和编写的,用于医疗设备和和谐的标准。如果进行修改和软件升级,则本文档中包含的信息如有更改,恕不另行通知。这是一种医疗设备,可以反复使用。手册根据设备的功能和要求,主要结构,功能,规格,运输,安装,使用,使用,操作,维修,维护和存储等描述。以及安全程序可以保护用户和设备。有关详细信息,请参阅尊重章节。使用此设备之前,请仔细阅读用户手册。应严格遵循描述操作程序的用户手册。未能遵循用户手册可能会导致测量异常,设备损伤和人体伤害。由于用户对操作说明的疏忽,制造商对安全性,可靠性和性能问题以及任何监测异常,人身伤害和装置损害概不负责。制造商的保修服务不涵盖此类缺陷。由于即将进行的翻新,您收到的特定产品可能与本用户手册的描述完全不符。我们会为此衷心遗憾。我们公司对本手册有最终解释。本手册的内容如有更改,恕不另行通知。警告提醒它可能会对测试人员,用户或环境造成严重后果。
石墨烯已被证明是复合材料的特殊增强添加剂,但其合成的高成本在很大程度上阻止了其在工业规模上的增加。Flash Joule加热提供了一种快速的,批量的方法,用于从煤炭材料(例如冶金可乐(MC))合成石墨烯,进入冶金焦源浅灰灰石墨烯(MCFG)。在这里,这项工作研究了比文献中先前报道的纳米纤维含量含量更高的石墨烯 - 环氧复合材料的特性。具有20至50 wt%的MCFG的复合材料。MCFG的比例为1:2:DGEBA,年轻的模量增加了92%,比例为1:3,硬度增加了140%。 在MCFG的1:4比率下,DGEBA,抗压强度和最大应变分别增加145%和61%。 在MCFG的1:3比例时:DGEBA,韧性增加了496%。 最后,以MCFG的1:1比率:DGEBA,温室气体排放,用水和能耗分别降低了33%,47%和34%。 作为FG坠落的成本,因为它可以由MC(如MC)(如MC),没有溶剂或水的毫秒而产生,因此前景有望在复合材料中进行高载荷。MCFG的比例为1:2:DGEBA,年轻的模量增加了92%,比例为1:3,硬度增加了140%。在MCFG的1:4比率下,DGEBA,抗压强度和最大应变分别增加145%和61%。 在MCFG的1:3比例时:DGEBA,韧性增加了496%。 最后,以MCFG的1:1比率:DGEBA,温室气体排放,用水和能耗分别降低了33%,47%和34%。 作为FG坠落的成本,因为它可以由MC(如MC)(如MC),没有溶剂或水的毫秒而产生,因此前景有望在复合材料中进行高载荷。在MCFG的1:4比率下,DGEBA,抗压强度和最大应变分别增加145%和61%。在MCFG的1:3比例时:DGEBA,韧性增加了496%。最后,以MCFG的1:1比率:DGEBA,温室气体排放,用水和能耗分别降低了33%,47%和34%。作为FG坠落的成本,因为它可以由MC(如MC)(如MC),没有溶剂或水的毫秒而产生,因此前景有望在复合材料中进行高载荷。
石墨烯量子点(GQD)据报道,以增强复合特性的纳米填充剂的作用。在复合材料中详细介绍了该纳米纤维的介绍。为了了解游戏中的基本机制,本研究使用分子动力学模拟来揭示GQD对环氧性特性的影响。在三种不同的GQD化学分配上进行了机械模拟,其中包括原始的GQD和2个边缘氨的GQD,具有不同程度的功能化(5.2%和7.6%)。这些GQD分别插入了五个个体重复的聚合物基质中。使用单轴应变模拟计算纳米复合机械性能,以显示嵌入式GQD的效果。©2024作者。由Elsevier Inc.出版这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)