尽管如此,由于文献或材料供应商数据表中关于材料高温 CHS 的报道非常少,因此湿气引起的应力大多被忽略。这是由于缺乏有效的测量方法和该领域的技术知识 [5]。由于测量过程中湿气会快速蒸发,因此测量高温膨胀具有挑战性。市售工具,如带相对湿度附件的动态机械分析仪 (DMA-RH) [5, 6],其温度能力有限,最高可达 85 !C,而典型的无铅焊料回流工艺可高达 260 !C。更高温度的测量在技术上具有挑战性。需要更高的压力来将湿气保持在高温下的液态,而使用当今的标准工具根本无法实现。一种更流行的方法是使用标准热机械分析仪 (TMA) 设备来测量加热时饱和样品的应变。快速解吸会导致湿气分布不均匀。因此,假设应变为平均应变。需要进行额外的水分质量校正后处理分析来补偿水分损失。据报道,这种方法往往会高估 CHS [2, 4]。此外,一些研究建议避免使用基于解吸的方法,因为某些材料可能具有不可逆的吸湿膨胀特性 [7]。另一种尝试过的方法是莫尔干涉法 (MI) [8, 9],它具有良好的准确性和可重复性。然而,它有固有的局限性,因为在样品表面复制的耐腐蚀光栅会导致测量误差,尤其是对于薄样品。此外,所有这些都是
环氧树脂广泛用于电路板层压板、结构复合材料、粘合剂和表面涂层 [1]。热固性聚合物的交联度更高。环氧树脂具有更好的机械、物理和摩擦学性能,因此被用于结构应用。环氧树脂具有高模量、抗疲劳、低蠕变,并且在高温下也能很好地工作 [2-4]。交联密度越高,断裂韧性、抗裂纹起始和生长的刚度越低,这反过来限制了环氧树脂在现代应用中的使用 [5]。在环氧树脂固化过程中,交联链中会产生应力,这会降低断裂韧性、降低抗裂纹起始能力以及由于塑性变形而限制空隙的增长 [6,7]。通过改变环氧树脂的组成并混合不同的纳米填料作为第二阶段,可以应对这些挑战,从而实现高级复合材料应用 [8,9]。环氧树脂与纳米填料的混合可提高断裂韧性、刚度和强度[10]。这些纳米填料包括无机纳米颗粒,如粘土[11]、Al2O3[12]、ZrO2[13,14]和TiO2[4]。加入无机纳米填料如碳纳米管[15]和SiO2[5]后,表现出良好的机械性能,有趣的是,环氧树脂的韧性增加了,而基本性能没有改变。基质形态的变化主要是由于纳米填料渗透到致密的环氧交联网络之间。在目前的研究中,我们尝试生产SiO2/环氧树脂纳米复合材料。选择超声波技术,通过改变纳米填料的浓度来改变填料的粒径。
1。介绍于2020年3月19日,EPA收到了一份完整的制造商请求八甲基甲基甲氯-Siloxane的风险评估,也称为D4(CASRN 556-67-2)(EPA-HQ-HQ-oppt-2018-0443- 0004)。d4是一种重要的商业化学化学物质,用于制造其他有机硅化学物质,作为化妆品,护发产品和除臭剂的成分(Kim等人2016)。在对现有化学物质进行风险评估时,EPA旨在“确定化学物质是否呈现出不合理的健康或环境伤害风险,而无需考虑成本或其他非风险因素,包括在使用条件下与管理员相关的潜在暴露或易感亚群的不合理风险。”使用条件在TSCA第3(4)节中法律定义为“由管理员确定的情况,根据该情况,在该情况下,在该情况下,将化学物质的意图,已知或合理预测的情况下用于商业,使用或处置的情况。”本文档截至本文档的制造日期(包括进口),处理,商务分配,使用和处置D4的文档之日提供了公开可用的信息,并用于为有关使用条件提供信息。该文档未直接从其他来源(例如制造商,处理器等)收到的信息,该信息进一步告知了范围文件草案中的使用条件。因此,本文档中描述的用途可能与范围文档草案中的使用条件有所不同。
SU-8 2000 是一种高对比度、环氧基光刻胶,专为微加工和其他微电子应用而设计,这些应用需要厚实、化学和热稳定的图像。SU-8 2000 是 SU-8 的改进配方,多年来已被 MEMS 生产商广泛使用。使用干燥速度更快、极性更强的溶剂系统可提高涂层质量并提高工艺产量。SU-8 2000 有 12 种标准粘度。单次涂覆工艺即可实现 0.5 至 >200 微米的薄膜厚度。薄膜的暴露部分和随后的热交联部分不溶于液体显影剂。SU-8 2000 具有出色的成像特性,能够产生非常高的纵横比结构。SU-8 2000 在 360 nm 以上具有非常高的光透射率,这使其非常适合在非常厚的薄膜中对近垂直侧壁进行成像。 SU-8 2000 最适合于在设备上成像、固化并保留的永久应用。
SU-8 2000 是一种高对比度、环氧基光刻胶,专为微加工和其他微电子应用而设计,这些应用需要厚实、化学和热稳定的图像。SU-8 2000 是 SU-8 的改进配方,多年来已被 MEMS 生产商广泛使用。使用干燥速度更快、极性更强的溶剂系统可提高涂层质量并提高工艺产量。SU-8 2000 有 12 种标准粘度。单次涂覆工艺即可实现 0.5 至 >200 微米的薄膜厚度。薄膜的暴露部分和随后的热交联部分不溶于液体显影剂。SU-8 2000 具有出色的成像特性,能够产生非常高的纵横比结构。SU-8 2000 在 360 nm 以上具有非常高的光透射率,这使其非常适合在非常厚的薄膜中对近垂直侧壁进行成像。 SU-8 2000 最适合于在设备上成像、固化并保留的永久应用。
氧化石墨烯(GO)由于其机械,光学,电气和化学性质而引起了科学界的显着关注。本综述概述了综合方法进行功能化,包括涉及有机分子共价和非共价键的合成方法。在对这一领域的新贡献中,特别强调通过环氧环开放的功能化,这是一个研究和理解的主题。我们首先提供了石墨烯氧化石墨烯的基本结构和特性的概述。然后,我们探索用于使氧化石墨烯官能化的各种方法,并指出这些反应的复杂性,这些反应有时以非特定方式发生。但是,有一些针对性功能化的策略。此外,我们通过环氧基团对共价官能化进行了批判性分析,在选择反应培养基时表明要考虑的重要方面。碱性环境似乎有利于这种反应,并且在功能化反应中使用碱性pH的优点和缺点尚无共识。我们还展示了一些挑战,这些挑战涉及功能化的表征和确认,主要是在基础平面中,并且我们展示了可以在未来的研究中探索的表征技术的进步。最后,提出了一些当前的挑战和未来的研究指示,以促进该领域的发展。
目标。紫杉醇诱导的周围神经病(PIPN)是紫杉醇的令人衰弱的,很难进行治疗的侧面。可溶性环氧化物水解酶(SEH)可以迅速将内源性抗炎介质的环氧化脱烯酸(EET)代谢为二羟基二酸酯。TIS研究旨在评估SEH抑制剂N-(1-(1-氧化)-4-磷酸胺] -n' - (三氟甲氧基)苯基)-UREA(TPPU)在大鼠PIPN中起关键作用,并为治疗提供了新的治疗目标。方法。建立了由NAB-列甲赛诱导的PIPN的Sprague-Dawley雄性大鼠模型。大鼠随机分为对照组,NAB-列甲赛组和Nab-Paclitaxel + TPPU(SEH抑制剂)组,每个组中有36只大鼠。检测到SEH抑制剂TPPU对行为测定,凋亡,神经胶质激活,轴突损伤,微结构以及血脊髓屏障的渗透性,并通过检查NF-κB信号通道的表达来探索基本机制。结果。Te results showed that the mechanical and thermal pain thresholds of rats were decreased after nab-paclitaxel treatment, accompanied by an increased expression of axonal injury-related proteins, enhanced cell apoptosis, aggravated destruction of vascular permeability, intense glial responses, and elevated in- fammatory cytokines and oxidative stress in the L4-L6 spinal cord.tppu通过抑制SEH和NF-κB信号通路的激活,通过降低杀菌性细胞因子的水平和氧化应激来解释PIPN。结论。TPPU通过增加紧密连接蛋白的表达来恢复机械和热阈值,减少细胞凋亡,减少轴突损伤和神经胶质反应以及保护血管通透性。tese fndings支持SEH在PIPN中的作用,并表明SEH的抑制代表了PIPN的潜在新治疗靶标。
本文提出了新的实验和数值方法,以表征环氧聚合物底物的转移过量。我们研究了陶瓷面板上的多芯片模块以及封装为模具阵列包装(MAP)的印刷电路板上。实验表明,在过度过度过程中的聚合物流量显着取决于霉菌的高度:虽然标准的地图型霉菌腔均匀地填充,并且在大多数情况下,在大多数情况下,低空腔高度(<500 l m)可以导致前部的流量集中在几个流动路径上(forling parsssssssssssssssssssssspersifecifecte)。我们开发了一种数字方法来描述这种不均匀的聚合物流。流动前填充的原因似乎是聚合物粘度的局部变化,可在不同的流路径上强制颈部。指法会导致空气陷阱的形成和过多的电线。我们还开发了新的实验方法来测量腔内的压力分布:我们的传感器基于Fujufilm的市售,具有压力敏感的薄膜,并且在最高180的温度下运行。2010 Elsevier Ltd.保留所有权利。
本文所述产品(以下简称“产品”)的销售须遵守 Huntsman Advanced Materials LLC 或其适当关联公司(包括但不限于 Huntsman Advanced Materials (Europe) BVBA、Huntsman Advanced Materials Americas Inc. 或 Huntsman Advanced Materials (Hong Kong) Ltd.)(以下简称“Huntsman”)的一般销售条款和条件。以下内容取代买方文件。Huntsman 保证,在交货时间和地点,向买方出售的所有产品均符合 Huntsman 向买方提供的规格。尽管据亨斯迈所知,本出版物中包含的信息和建议在出版之日是准确的,但本出版物中包含的任何内容(除上述有关符合亨斯迈向买方提供的规格的规定外)均不得解释为任何明示或暗示的陈述或保证,包括但不限于任何适销性或针对特定用途的适用性的保证、不侵犯任何知识产权的保证、或有关质量或与先前描述或样品的一致性的保证,买方承担因使用此类信息和建议而产生的任何风险和责任。产品,无论单独使用还是与其他物质结合使用。此处的任何声明或建议均不得解释为关于任何产品是否适合买方或用户的特定用途的陈述或侵犯任何专利或其他知识产权的诱因。买方有责任确定此类信息和建议的适用性以及任何产品是否适合其自身特定用途,并确保其对产品的预期用途不侵犯任何知识产权。产品可能具有或变得具有危险性。买方应从亨斯迈获取材料安全数据表和技术数据表,其中包含有关产品危害和毒性的详细信息,以及产品的正确运输、处理和储存程序,并应遵守与产品的处理、使用、储存、分销和处置以及接触有关的所有适用的政府法律、法规和标准。买方还应采取一切必要措施,充分告知、警告并使其可能处理或接触产品的员工、代理、直接和间接客户和承包商熟悉与产品有关的所有危险,以及安全处理、使用、储存、运输和处置和接触产品的正确程序,以及可能处理、装运或储存产品的容器或设备。