摘要:对实现更可持续制造和循环经济模型的高性能生物材料的需求正在显着增长。卡夫木质素(KL)是一种丰富且功能高的芳香/酚类生物聚合物,是纸浆和造纸工业的主要侧产品,以及最近的第二代生物填充物。在这项研究中,将KL纳入了基于双苯酚A(DGEBA)的二甘油乙醚(DGEBA)和胺固化剂(Jeffamine D-230)的玻璃状环氧系统中,该系统被用作固化剂的部分替换和DGEBA前固化剂和DGEBA前添加剂或反应性添加剂。A 由原始的(未修饰)KL替换为14 wt。%,而与Neat Epoxy Polymer相比,高达30 wt的KL-氧基复合材料具有相似的热力学特性,并且具有相似的热力学特性,并且具有相似的热力学特性,并且具有显着增强的抗氧化特性。 此外,还研究了KL粒径的效果。 球铣削的牛皮木蛋白(BMKL,10 µm)和纳米林蛋白(NLH,220 nm)在球铣削和超声化后获得,并在同一环氧系统中作为添加剂进行了研究。 显着改善的分散体和热机械特性,主要用纳米林蛋白获得,这些纳米林蛋白表现出完全透明的木质素 - 环氧复合材料,张力强度较高,储存模量和玻璃转变温度,即使在30wt。%的载荷下也是如此。 最后,KL木质素是糖基化(GKL)并用作基于生物的环氧前聚合物,可达到高达38 wt的基于化石的DGEBA的38 wwt。%替代。 GKL复合材料表现出改善的热机械性能和透明度。由原始的(未修饰)KL替换为14 wt。%,而与Neat Epoxy Polymer相比,高达30 wt的KL-氧基复合材料具有相似的热力学特性,并且具有相似的热力学特性,并且具有相似的热力学特性,并且具有显着增强的抗氧化特性。此外,还研究了KL粒径的效果。球铣削的牛皮木蛋白(BMKL,10 µm)和纳米林蛋白(NLH,220 nm)在球铣削和超声化后获得,并在同一环氧系统中作为添加剂进行了研究。显着改善的分散体和热机械特性,主要用纳米林蛋白获得,这些纳米林蛋白表现出完全透明的木质素 - 环氧复合材料,张力强度较高,储存模量和玻璃转变温度,即使在30wt。%的载荷下也是如此。最后,KL木质素是糖基化(GKL)并用作基于生物的环氧前聚合物,可达到高达38 wt的基于化石的DGEBA的38 wwt。%替代。GKL复合材料表现出改善的热机械性能和透明度。使用NMR,TGA,GPC和DLS技术对所有木质素进行了广泛的表征,以相关并证明环氧聚合物表征的结果。
天然纤维复合材料对湿热环境(湿度和服务温度升高)高度敏感。可以通过使用纳米材料作为组成的增材制造来增强此类复合材料的长期行为。因此,这项研究研究了杂交亚麻纤维增强的环氧复合材料的机械性能,其为0%,0%,0.5%,0.5%,1%和1.5%的石墨烯纳米颗粒在暴露于1000、2000,3000小时的相对湿度为98%之后,在20°C和60°C和60°C C. C. C. c. comp的相对湿度为98%。通过弯曲和层间剪切测试。湿热调节模拟。这项研究的结果表明,石墨烯纳米颗粒在减少水分吸收和改善湿透性调节后的机械性能中起着重要作用。与没有石墨烯纳米颗粒的样品相比,杂化复合材料的弯曲和层间剪切强度增加了0.5%,1.0%和1.5%的石墨烯增加了77.7%,72.0%,77.1%和77.1%,以及75.5%,70.6%和73.5%,C。由于水分扩散到亚麻纤维和树脂塑料的燃料中,杂化复合材料随着调节温度和暴露持续时间的升高而增加。尽管如此,由于其在基质中的分布更好,因此发现0.5%石墨烯纳米颗粒在保留老化杂化复合材料的机械性能方面是最佳的。加速的测试结果表明,在在湿热环境中服役100年后,杂种复合材料分别可以保留至少57%和49%的弯曲和层间剪切强度,在30℃的温度下,澳大利亚的平均年度温度在30°C的温度下散发出来。
0D 零维 1D 一维 2D 二维 3D 三维 AFM 原子力显微镜 AI 人工智能 AM 增材制造 AMO DOE 先进制造办公室 aPPO 无定形聚环氧丙烷 BES DOE 基础能源科学办公室 BRN 基础研究需求 CAMERA 能源研究应用高级数学中心 CT 计算机断层扫描 DFT 密度泛函理论 DOE 能源部 DPD 耗散粒子动力学 EDS 能量色散 x 射线光谱 EJ 艾焦耳 FEL 自由电子激光器 fs 飞秒 GHG 温室气体 HEDM 高能衍射显微镜 HPC 高性能计算 HTE 高通量实验 iPPO 环氧丙烷等规聚合 IR 红外 LED 发光二极管 Li 锂 MAS 魔角旋转 ML 机器学习 MOF 金属有机骨架 MS 质谱或微秒 NIST 美国国家标准与技术研究所 NOx 氮氧化物 NSLS 美国国家同步加速器光源 PCAST 总统科学技术顾问委员会 PDF 对分布函数 PRD 重点研究方向 ps 皮秒 R&D 研究与开发 s 秒 SAXS 小角度 x 射线散射 SEM 扫描电子显微镜/显微镜 SLM 选择性激光熔化 ssNMR 固态核磁共振 TEM 透射电子显微镜/显微镜 YAG 钇铝石榴石
在过去的几十年里,人们投入了大量的时间和精力来提高环氧模塑料 (EMC) 封装的半导体封装翘曲的可预测性。借助先进的计算力学技术和计算硬件,人们可以模拟几乎任何类型的封装。数值预测所需的热机械性能,包括热膨胀系数 (CTE)、玻璃化转变温度 (T g ) 以及随温度和时间变化的粘弹性能,通常通过热机械分析仪 (TMA) 和动态机械分析仪 (DMA) 等商用工具进行测量。此外,可以使用基于阴影莫尔条纹和数字图像相关 (DIC) 的商用工具轻松测量随温度变化的翘曲。尽管付出了巨大的努力,但准确的预测仍然是一项艰巨的任务。EMC 通常占据封装体积的很大一部分,因此在封装翘曲行为中起着重要作用。这篇评论文章研究了关键的 EMC 属性对翘曲行为的影响。基于文献中报告的数据和分析,本文讨论了导致预测仍然困难的三个潜在原因,并讨论了应采取哪些措施才能将预测能力达到所需水平。
摘要:迫切需要找到可持续的方法来生产不含双酚 A 的高性能热固性材料,用于太空或航空航天领域等特定应用。在本研究中,选择了芳香族三环氧物三(4-羟基苯基)甲烷三缩水甘油醚 (THPMTGE),通过与酸酐共聚来生成高交联网络。事实上,制备的热固性材料的凝胶含量 (GC) 约为 99.9%,玻璃化转变值介于 167–196 ◦ C 之间。通过 DMA 分析检查的热机械性能表明材料非常坚硬,E ′ 约为 3–3.5 GPa。热固性材料的刚性由杨氏模量值确认,杨氏模量值介于 1.25–1.31 GPa 之间,断裂伸长率约为 4–5%,拉伸应力约为 35–45 MPa。 TGA 分析强调了非常好的热稳定性,优于 340 ◦ C。还评估了极限氧指数 ( LOI ) 参数,显示了具有良好阻燃性能的新材料的开发。
免疫治疗的临床应用是肿瘤治疗的里程碑,但部分患者对免疫治疗反应不佳。环氧合酶-2(COX-2)在多种癌细胞中均有表达,且与预后不良相关。它是前列腺素E2(PGE2)的关键酶,已被证明能促进肿瘤细胞的发展、增殖和转移。近期研究进一步发现,肿瘤微环境(TME)中的PGE2通过多种途径主动触发肿瘤免疫逃逸,导致免疫治疗反应不佳。COX-2抑制剂被认为可以抑制PGE2的免疫抑制,并可能增强或逆转免疫检查点抑制剂(ICI)的反应。本综述深入探讨了COX-2/PGE2信号在免疫抑制性TME中的机制,并总结了其在肿瘤治疗中的临床应用和试验。
凭借着坚实的经营基础,德山开始将开发出的先进技术应用于新的产业领域。1964年,德山开始生产聚环氧丙烷,迈出了进军石油化学领域的第一步。之后,在1970年代开始生产薄膜和建筑材料,在1980年代开始生产多晶硅等电子材料以满足蓬勃发展的半导体产业的需求,以及在1980年代开始生产牙科材料和眼镜镜片材料等,进入了多个领域。这些举措为德山成长为综合化学品制造商奠定了坚实的基础。
近年来随着研究的深入,高导热复合材料多是通过构建三维网络结构来获得的。14,36制备三维CF骨架的常用方法有简单的共混法、37,38化学气相沉积法(CVD)、39电泳沉积法、40,41静电锁定法42-44和冷冻干燥取向法45,46然而在共混工艺和CVD作用下,CF细丝通常随机、无序地分布在前驱体基体中。具有无取向CF结构的复合材料不易实现连续的热传输路径。为了构建连续的导热网络结构,提高CF的取向度已被证明是一种有效的手段。13众所周知
Na(100)Na(110)Na(111)NaCl(100)NaCl(100)NACL(100)NACL(111)CO -0.25 EV -0.26 EV -0.23 EV -0.23 EV -0.23 EV -0.17 EV -0.17 EV -0.42 EV -0.42 EV CO 2 -0.25 EV -0.19 EV -0.19 EV -0.19 EV -0.19 EV -0.19 EV -0.35 EEVE -0.35 EEVE EAVE -0.35 EE.-0.35 EE.-0.35 EE.-0.35 EE..25 EV -7.98 EV -7.90 EV -0.88 EV -8.96 EV DMC -0.57 EV -0.56 EV -0.56 EV -0.56 EV -0.48 EV -0.48 EV -0.48 EV -0.47 EV -1.22 EV -1.22 EV CH 3O(甲基) (1,2 -2-甲酸)-4.00 EV -3.74 EV -3.94 EV -0.60 EV -4.60 EV -4.4.66 EV C 2 H 3 O 3 O 3(甲酸甲酯)-4.65 EV -4.53 EV -4.53 EV -4.53 EV -0.61 EV -0.5.50 EV -53 (甲氧基甲盐)-2.46 EV -2.59 EV -2.38 EV -0.48 EV -0.48 EV -3.49 EV -3.49 EV C 3 H 6 O 2(1,2 -2 -propandaly)-3.90 EV -3.74 EV -3.74 EV -3.74 EV -3.94 EV -3.94 EV -0.0.0.0.60 EV -0.60 EV -0.60 EV -0.60 EV -0.60 EV C 4(1 4(1 4(1 4(1 4(1)) -8.14 EV -7.92 EV -7.81 EV -0.69 EV -9.24 EV C 4 H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H,H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H” .0.37 EV -0.50 EV C 3 H 6 O 1(1)(1 -2-2 -IL)-0.76 EV -0.66 EV -66 EV -66 EV -1.00 EV -0.49 EV -0.49 EV -0.49 EV -0.87 EV -0.87 EV C3 H 6 O 1(2)(2)(2 -propantaly -1 -1 -1 -1-yl) 51 EV -0.51 EV -0.51 EV -0.51 EV。 -2.84 EV PO(丙烷氧化物)-0.42 EV -0.43 EV -0.14 EV -0.51 EV -0.93 EV
1-溴丙烷(1-BP),也称为溴丙烷,是一种无色、易挥发的液体,具有刺激性气味。用作多种工业产品的合成剂。它被推广并用作破坏臭氧层的溶剂的替代品,特别是用于金属部件的气相脱脂、清洁印刷电路和粘合剂的配制。在蒸汽脱脂操作过程中,职业接触水平通常低于 20 ppm (100 mg/m 3 ),而在喷涂粘合剂过程中则可能远远超过 100 ppm (500 mg/m 3 )。在大鼠中,1-BP 在呼出的空气中大部分以原形排出。它还在肝脏中代谢为丙酸,并与谷胱甘肽结合后代谢为各种硫醇尿酸。这些代谢物与溴离子一起通过尿液排出体外。目前还没有关于 1-BP 对人类毒性作用的系统研究。然而,文献报道,在接触该病毒的工人中,有几例出现眼睛、喉咙和皮肤刺激以及神经毒性的情况,其中包括一例周围神经病变。在动物中,1-BP 对皮肤和眼睛有刺激性,并且在浓度通常高于 1000 ppm 的情况下,通过亚慢性吸入大鼠,对肝脏、中枢和周围神经系统、血液和雄性生殖系统产生影响但大约 200 或 300 ppm 才能产生某些效果。目前尚无关于 1-BP 的致癌性或其对发育影响的研究。然而,1-BP在大鼠体内的代谢中间体之一是环氧丙烷,在动物中是一种诱变剂和致癌剂。在一般环境中,该产品主要以气态形式存在于室外环境空气中,并在不到 2 周的时间内降解。它有助于对流层臭氧(光化学烟雾)的形成和全球变暖。其臭氧消耗潜力可能较低,但仍存在争议。1-BP 没有法定暴露限值。制造商建议的 8 小时标准为 3、10、25、50 或 100 ppm。根据所使用的测定方法,1-BP 的闪点存在模糊性,这使得有关该物质的运输、储存、处理和使用的任何通用建议都存在问题。在目前的知识水平下,推荐使用这种溶剂似乎还为时过早,主要是因为它的神经毒性和生殖毒性作用已经在动物身上记录下来,而且缺乏关于潜在致癌性和潜在毒性的数据。胚胎、胎儿和新生儿发育,以及由于其可燃性的不确定性。