在三个扇区循环流程图中,政府是产品和资源市场的买方(需求)。政府向家庭和公司提供公共物品,公共服务以及向家庭和公司的付款,以换取税款。
摘要:本文探讨了基于光流视频的技术在存在波浪破碎诱导泡沫的近岸估计波浪滤波表面电流的潜力。该方法使用破碎波通过后留下的漂流泡沫作为准被动示踪剂并跟踪它以估计表面水流。首先从图像序列中去除与海浪相关的光学特征,以避免捕获传播波而不是所需的泡沫运动。通过对图像的每个像素应用时间傅立叶低通滤波器来去除波浪。然后将低通滤波图像输入光流算法以估计泡沫位移并产生平均速度场(即波浪滤波表面电流)。我们使用一周连续的 1 Hz 采样帧,这些帧是在白天通过位于 La Petite Chambre d'Amour 海滩(法国西南部安格雷)的单个固定摄像机收集的,当时处于高能条件,显著波高范围为 0.8 至 3.3 米。将光流计算的速度与从安装在水下礁石上的一个洋流剖面仪获取的时间平均原位测量值进行了比较。将计算出的环流模式与不同场条件下的碎浪区漂流物轨迹进行了比较。光流时间平均速度与洋流剖面仪测量值显示出良好的一致性:判定系数(r2)= 0.5–0.8;均方根误差(RMSE)= 0.12–0.24 m/s;平均误差(偏差)= − 0.09 至 − 0.17 m/s;回归斜率 = 1 ± 0.15;相干性 2 = 0.4–0.6。尽管低估了持续波浪冲击礁石时的离岸速度,但光流能够正确再现漂流轨迹所描绘的平均流模式。这些模式包括裂口环流、主要的向岸表面流和充满活力的沿岸流。我们的研究表明,开源光流算法是一种很有前途的沿海成像应用技术,特别是在高能波浪条件下,当现场仪器部署可能具有挑战性时。
3 de Jul。 de 2021 - 宏观经济学代表了在经济中的“循环”和金钱的“循环流”。 但是,他的计划与今天的宏观有很大不同...3 de Jul。de 2021 - 宏观经济学代表了在经济中的“循环”和金钱的“循环流”。但是,他的计划与今天的宏观有很大不同...
Nathaniel Chaney 观察和了解 AMF3 BNF 中尺度环流中表面热异质性的作用:对陆地-大气相互作用的影响
1. 按正确顺序说出构成大气层的四个层级(对流层、平流层、中间层和热层)。2. 找出大气层不同层级之间的过渡区域(对流层顶、平流层顶和中间层顶)。3. 结合主要气体及其相对丰度,描述大气层的化学成分。仅限于对流层。4. 描述温度如何随海拔高度变化,从而导致大气层结。5. 画出大气层的温度剖面图。6. 解释电磁波谱是一段以相同速度传播,但频率、波长和能量不同的连续辐射。7. 结合入射辐射和出射辐射之间的平衡,描述地球的能量收支。仅限于定性分析。8. 解释反照率以及不同表面和环境的反照率有何不同。9. 简述全球大气环流模式如何分配太阳辐射。10. 认识哈德利环流、费雷尔环流和极地环流的重要性。 11. 解释自然温室效应。12. 描述自然温室效应如何维持适宜生命生存的温度。
海洋溶解有机磷 (DOP) 库主要由 P 酯组成,此外还有同样丰富的膦酸盐和 P 酐分子(数量较少)。在磷酸盐有限的海洋区域,固氮菌被认为依赖 DOP 化合物作为磷 (P) 的替代来源。虽然 P 酯和膦酸盐都能有效促进氮 (N 2 ) 固定,但 P 酐对固氮菌的作用尚不清楚。在这里,我们探讨了 P 酐对两个生物地球化学条件形成鲜明对比的站点的 N 2 固定的影响:一个位于汤加海沟火山弧地区(“火山”,磷酸盐含量低、铁浓度高),另一个位于南太平洋环流(“环流”,磷酸盐含量中等、铁含量低)。我们用 AMP(P 酯)、ATP(P 酯和 P 酐)或 3polyP(P 酐)培养表层海水,并确定了 Crocosphaera 和 Trichodesmium 中细胞特定的 N 2 固定率、nifH 基因丰度和转录。Trichodesmium 对添加的任何 DOP 化合物均无反应,这表明它们在火山站不受 P 限制,并且在环流站被低铁条件击败。相反,Crocosphaera 在两个站都数量众多,它们的特定 N 2 固定率在火山站受到 AMP 的刺激,在两个站受到 3polyP 的轻微刺激。尽管磷酸盐和铁的可用性形成对比,但两个站的异养细菌对 ATP 和 3polyP 添加的反应相似。 Crocosphaera 和异养细菌在低磷酸盐浓度和中等磷酸盐浓度下使用 3polyP 表明,这种化合物除了是 P 的来源外,还可用于获取两个群体竞争的能量。因此,P-酸酐可能会在未来分层和营养贫乏的海洋中利用能量限制来限制固氮菌。
大气与海洋之间的相互作用在能量重新分配方面起着至关重要的作用,从而维持气候系统的能量平衡。在本文中,我们研究了大气和海洋热量输送变化之间的补偿。受先前主要使用数值气候模型的研究启发,使用再分析数据集研究了这种所谓的 Bjerknes 补偿。我们发现大气能量输送 (AMET) 和海洋能量输送 (OMET) 变化在再分析数据集中通常具有很好的一致性。通过多个再分析产品,我们发现从年际到十年的时间尺度,Bjerknes 补偿存在于北半球从 40°N 到 70°N 的几乎所有纬度。补偿率在不同时间尺度的不同纬度达到峰值,但它们总是位于亚热带和亚极地地区。与一些数值气候模型实验不同,这些实验将补偿归因于瞬态涡流输送对数十年时间尺度上的 OMET 变化的响应,我们发现平均流对 OMET 变化的响应导致了 Bjerknes 补偿,从而导致冬季中纬度地区 Ferrel 环流在数十年时间尺度上的移动。该环流本身由涡流动量通量驱动。海洋对 AMET 变化的响应主要是风驱动的。在夏季,几乎没有任何补偿,所提出的机制不适用。鉴于历史记录较短,我们无法确定是海洋驱动大气变化还是相反。
Prepp Mains Booster:重要的地球物理现象,如地震、海啸、火山活动、气旋等,地理特征及其在关键地理特征(包括水体和冰盖)中的位置变化 背景: 来自果阿国家极地和海洋研究中心和果阿大学地球、海洋与大气科学学院的一组研究人员进行的一项新研究(《自然通讯》)生成了阿拉伯海的自生钕同位素记录,并重建了印度洋深水环流 (DWC) 记录,记录时间从 1130 万年前(中新世)到 198 万年前(更新世)。