对气候危机影响的预测在本质上似乎是圣经式的——干旱和洪水、饥荒和极端风暴、生态系统崩溃以及海洋和大气环流的破坏。其中一些物理变化涉及气候系统的阈值,超过该阈值,重大影响就会加速或变得不可逆转和不可阻挡。气候系统的复杂性意味着许多结果仍然未知——当阈值被突破并且生物物理系统崩溃时,直接影响可能会变得非线性。我们可能在某些地区面临严重的粮食和水资源短缺、气候难民的出现以及大规模移民、流离失所和冲突——从而引发我们的政治和民主制度的侵蚀,而这些制度本身对于找到解决方案至关重要。我们正在进入未知领域——见图 1。
1. 按正确顺序说出构成大气层的四个层级(对流层、平流层、中间层和热层)。2. 找出大气层不同层级之间的过渡区域(对流层顶、平流层顶和中间层顶)。3. 结合主要气体及其相对丰度,描述大气层的化学成分。仅限于对流层。4. 描述温度如何随海拔高度变化,从而导致大气层结。5. 画出大气层的温度剖面图。6. 解释电磁波谱是一段以相同速度传播,但频率、波长和能量不同的连续辐射。7. 结合入射辐射和出射辐射之间的平衡,描述地球的能量收支。仅限于定性分析。8. 解释反照率以及不同表面和环境的反照率有何不同。9. 简述全球大气环流模式如何分配太阳辐射。10. 认识哈德利环流、费雷尔环流和极地环流的重要性。 11. 解释自然温室效应。12. 描述自然温室效应如何维持适宜生命生存的温度。
海洋和水域中的可能性正在不断扩大。通过结合遥感、载人和无人平台、高带宽通信和自主性,可以比以往更快、更安全、更环保地获取数据。这种洞察力正在增加我们对水下世界及其影响的了解。作为内陆、沿海、近海和深海作业的海洋技术提供商,无论是用于科学、国防、能源还是食品生产,我们都是这种不断扩大可能性的核心。正如您将在第 10 页看到的,我们一直在成长。我们现在是 Sonardyne Group 的一部分,Sonardyne Group 是一个由独立公司组成的家族。2G Robotics、Chelsea Technologies、EIVA 和 Wavefront Systems 与我们并肩而立,这意味着我们为您提供的解决方案中存在更多的可能性。但是,即使只是在 Sonardyne International,通过我们的英国、新加坡、美国和巴西子公司,我们也在开发技术和服务,通过载人和无人操作为我们的客户生成前所未有的信息量。我们正在帮助揭开破坏性极强的墨西哥湾环流的秘密,利用长续航时间的传感器通过无人水面舰艇将数据传输到岸上(第 18 页);我们为超级游艇和商用船只提供海床和水柱的实时可视化,并在航行时自动发出警报,这样它们就可以避开隐藏的危险,通过我们的
摘要:随着海洋可再生资源开始成为可行的能源,研究流体动力学和形态动力学过程对近岸的影响变得至关重要。作为在 T ELEMAC-3D 和 S ISYPHE 模块的数值建模环境中实施涡轮机的一部分,我们进行了为期 10 年的运行,以评估涡轮机对流动的近岸影响。我们使用了五个标准来定义可行的位置。涡轮机位置被添加到与流体动力学模型耦合的转换能量模型中,以便正确开发能量转换过程中的流动变化。结果表明,在三个选定地点,涡轮机并没有平等地转换场地内的电流能量。事实上,位于农场外侧的涡轮机产生了更高的转换率。这对近岸产生了以下影响:(1) 洋流强度的降低导致水柱发生强烈调整,打破了垂直环流的自然模式;(2) 横向流动的发展随着时间的推移影响底部动力学并导致沉积物沉积的变化; (3)由于流动的发散,涡轮机场周围的推移质输送率增加。理想化的涡轮机场在 10 年内生产了 1,775 吉瓦时的电力,在此期间可以为 54,181 户居民提供电力。
摘要这项研究研究了聚会岛上的热环流(21°07'S 55°32'E),重点是该地区的复杂地形。分析了来自Bio -Maïdo运动的观察结果,以及使用Mesonh模型进行了2天的高分辨率模拟,以了解热驱动机制。该模拟的水平分辨率为100 m,并采用垂直拉伸的网格,在最低水平下达到1 m的分辨率。确定了两个不同的风度,其特征是夜间30 m厚的层内盛行的katabatic流,而白天在150至200 m的层中表现出一个分离的流动。通过对表面测量结果进行验证确认了模拟,从而实现了热风循环的详细研究。结果表明,贸易风的强度显着影响热循环的发展。复杂的分层结构。在7 m s -1的强度下,贸易风阻止了坡度上的热环流的发展,并导致局部和区域循环之间的收敛区的出现。对微风建立期的分析表明,katabatic流量在35分钟内稳定,比整形流动更快,这需要110分钟。动量和热预算分析提供了对热循环的主要驱动因素的见解:浮力加速,受解剖流量开始期间局部表面加热的影响以及在katabatic流量开始期间局部表面冷却。
摘要:解释北大西洋海面温度数十年变化的建议机制之一是,由于时间平均环流的大规模斜压不稳定性,自发形成了一种大规模低频内部模式。尽管这种模式已在浮力方差预算方面得到广泛研究,但其能量特性仍然知之甚少。在这里,我们执行了这种内部模式的完整机械能预算,包括可用势能 (APE) 和动能 (KE),并将预算分解为三个频带:平均、与大规模模式相关的低频 (LF) 和与中尺度涡旋湍流相关的高频 (HF)。这种分解使我们能够诊断不同储存器之间的能量通量并了解源和汇。由于该模式的规模很大,它的大部分能量都包含在 APE 中。在我们的配置中,LF APE 的唯一来源是从平均 APE 到 LF APE 的转移,这归因于大规模斜压不稳定性。反过来,LF APE 的汇点是参数化的扩散、流向 HF APE 的通量,以及在较小程度上流向 LF KE 的通量。额外风应力分量的存在削弱了多年代振荡并改变了不同能量库之间的能量通量。在所有实验中,与其他涉及 APE 的能量源相比,KE 转移似乎对多年代模式的影响很小。这些结果突出了完整 APE – KE 预算的实用性。
沿岸陷波 (CTW) 承载着海洋对边界强迫变化的响应,是沿岸海平面和经向翻转环流的重要机制。受西部边界对高纬度和公海变化的响应的启发,我们使用线性正压模型来研究科里奥利参数 (b 效应)、海底地形和海底摩擦的纬度依赖性如何影响西部边界 CTW 和海平面的演变。对于年周期和长周期波,边界响应的特点是改良的架波和一类新的漏坡波,它们沿岸传播,通常比架波慢一个数量级,并向内陆辐射短罗斯贝波。能量不仅沿着斜坡向赤道方向传输,而且还向东传输到内陆,导致能量在当地和近海耗散。 b 效应和摩擦力导致沿赤道方向沿岸衰减的陆架波和斜坡波,从而降低了高纬度变化对低纬度的影响程度,并增加了公海变化对陆架的渗透——较窄的大陆架和较大的摩擦系数会增加这种渗透。该理论与北美东海岸的海平面观测结果进行了比较,定性地再现了沿海海平面相对于公海向南的位移和幅度衰减。这意味着 b 效应、地形和摩擦对于确定沿海海平面变化热点发生的位置非常重要。
摘要:我们利用 2019 年 5 月至 6 月 30 天内具有真实大气强迫和背景环流的全球 1/25 8 混合坐标海洋模型 (HYCOM) 模拟研究了风致近惯性波 (NIW) 的产生、传播和消散。计算了总场的时间平均近惯性风能输入和深度积分能量平衡项,并将场分解为垂直模式以区分 NIW 能量的辐射和(局部)耗散分量。只有 30.3% 的近惯性风输入投射到前五个模式上,而前五个模式中的 NIW 能量之和占总 NIW 能量的 58%。几乎所有深度积分的 NIW 水平能量通量都投射到前五种模式上。NIW 模式的耗散和衰减距离的全球分布证实,低纬度是高纬度产生的 NIW 能量的汇聚点。发现 NIW 能量的局部耗散部分 q 局部 在整个全球海洋中是均匀的,全球平均值为 0.79。水平 NIW 通量从具有气旋涡度的区域发散,并汇聚在具有反气旋涡度的区域;也就是说,反气旋涡流是 NIW 能量通量的汇聚点 (特别是对于较高模式而言)。大多数未投射到模式上的残余能量在反气旋涡流中向下传播。全球近惯性风能输入量在30天内为0.21TW,其中只有19%传输到500米深度以下。
摘要 我们分析了在高能中潮沙洲海滩进行的为期 3 周的现场试验中收集的波浪诱导环流的欧拉和拉格朗日测量数据,该海滩有 500 米长的岬角和水下珊瑚礁。研究发现,波浪和潮汐条件的微小变化会极大地影响环流模式。根据离岸波浪倾角,确定了三种主要状态:(1)在沿岸正常配置下,除了低潮时的中等波浪外,流动以横岸运动为主,珊瑚礁上存在准稳定环流单元。(2)在阴影配置下,阴影区域内外分别存在流离岬角的向岸电流和弱振荡涡旋。(3)在偏转配置下,存在流向岬角并延伸到冲浪区以外的偏转裂口,中等波浪的活动在低潮时达到最大值。在 4 米斜波下,无论潮汐如何,偏转裂口都会活跃,平均深度平均速度高达 0.7 米/秒,离岸 800 米,深度 12 米,具有能量低频波动。我们的研究结果强调了偏转裂口将物质输送到远海的能力,表明此类裂口可以将沉积物输送到闭合深度之外。这项研究表明,在具有突出地质背景的海滩上,可以出现各种各样的波浪驱动环流模式,有时这些模式会共存。由于波浪和潮汐条件的微小变化,主要驱动机制可能会发生变化,从而导致环流在空间和时间上的变化比开放沙滩更大。
海洋和水域中的可能性正在不断扩大。通过结合使用遥感、载人和无人平台、高带宽通信和自主性,可以比以往更快、更安全、更环保地获取数据。这种洞察力正在增加我们对水下世界及其影响的了解。作为内陆、沿海、近海和深海作业的海洋技术提供商,无论是用于科学、国防、能源还是食品生产,我们都在不断扩大可能性方面发挥着核心作用。正如您将在第 10 页看到的,我们一直在成长。我们现在是 Sonardyne 集团的一部分,这是一个由独立公司组成的家族。2G Robotics、Chelsea Technologies、EIVA 和 Wavefront Systems 与我们并肩而立,这意味着我们为您提供的解决方案中存在更多的可能性。但是,即使只是在 Sonardyne International,通过我们的英国、新加坡、美国和巴西子公司,我们也在开发技术和服务,通过载人和无人操作为我们的客户生成前所未有的信息量。我们正在帮助揭开破坏性极强的墨西哥湾环流的秘密,使用长续航时间的传感器通过无人水面舰艇将数据传输到岸上(第 18 页);我们通过警戒式前视声纳 (FLS) 为超级游艇和商用船只提供海床和水柱的实时可视化,并在航行时自动发出警报,以便它们可以避开其他隐藏的危险(第 12 页);我们提供的软件可减少船只在勘测作业期间的时间(第 30 页)。对我们来说,创新发生在系统和传感器层面。阅读有关我们最新仪器的信息,包括:SPRINT-Nav Mini,这是我们 SPRINT-Nav 系列的新产品(第 36 页);我们的第二代陀螺仪 USBL;以及我们的 ADCP 功能(第 38 页)。最重要的是,我们喜欢听到客户如何使用我们的技术,包括我们的 Ranger Ultra-Short BaseLine 定位系统系列(第 22 页)。我们希望您也这样做。David Brown 编辑