加油站燃油价格的持续上涨以及开采、炼制和供应链管理成本的不断上升,导致公司购买低成本原油,这些原油的特点是酸度高、含硫量高。相对于硫化和环烷酸腐蚀机制,此类原油的加工会导致腐蚀速率急剧增加,因此,有必要采取缓解措施,进行成本效益评估并审查检查和维护计划。一家石油炼油厂在其常压蒸馏装置的特定点实施了一套监测系统,通过超声波腐蚀探头和抑制剂注入系统;目标是管理原油,使TAN(总酸值)值不超过1.5 mg(KOH)/g。本报告描述了系统的布局和操作,并简要介绍了所用的抑制剂系列;介绍了注入点和监测点的选择以及投入使用头几个月的测量腐蚀速率。
摘要:可再生能源大多是间歇性的,且地理分布不均匀;因此,对开发新的储能技术的需求很高。能够吸收光、将其储存为化学能并在需要时将其释放为热能的分子被称为分子太阳能热能存储 (MOST) 或太阳能热燃料 (STF)。此类分子为太阳能存储应用提供了一种有前途的解决方案。人们已经研究了不同的分子系统用于 MOST 应用,例如降冰片二烯、偶氮苯、芪、钌衍生物、蒽和二氢蓝。多环应变分子降冰片二烯 (NBD) 可光转化为四环烷 (QC),它具有高能量存储密度和长期储存能量的潜力,因此备受关注。未取代的降冰片二烯在这方面存在一些局限性,例如太阳光谱匹配性差和量子产率低。在过去十年中,我们的团队开发并测试了具有改进特性的新型 NBD 系统。此外,我们还在实验室规模的太阳能利用、储存和释放测试设备中展示了它们的功能。本报告描述了关于如何设计 NBD/QC 系统关键特性(光化学、能量储存、热释放、稳定性和合成)的最有影响力的最新发现,以及用于太阳能捕获和热释放的测试设备示例。虽然众所周知,引入供体 - 受体基团可以实现与太阳光谱更匹配的红移吸收,但我们设法引入了分子量非常低的供体和受体基团,从而实现了前所未有的太阳光谱匹配和高能量密度。其中一些系统中的战略性空间位阻显著增加了光异构体 QC 的存储时间,而二聚体系统具有独立的能量壁垒,可改善太阳光谱匹配、延长存储时间和提高能量密度。这些发现提供了一系列可能的化学改性方法,可用于调整 NBD/QC 系统的属性并使其适用于所需的应用,这对于任何想要接受设计高效 MOST 系统挑战的人都很有用。已经建造了几种测试设备,例如,一种混合 MOST 设备,它可以同时存储太阳能和加热水。此外,我们还开发了一种用于监测催化 QC 到 NBD 转化的设备,从而可以量化显着的宏观热量产生。最后,我们测试了不同配方的聚合物复合材料,这些复合材料可以在白天吸收光线并在夜间将能量释放为热量,以备将来用于窗户涂层应用。这些实验室规模的实现具有形成性,有助于推动该领域向 MOST 系统的实际应用迈进。