•此过程能够生产具有优化燃料特性的可调节的异烷烃/环烷基喷气燃料•环烷烃为改善燃料密度和燃烧特性提供了对石质和芳族烃的燃烧特性的潜力•技术•技术增强了PNNL/Lanzatech的燃料效率•通过DOE的燃料构成,并提高了燃料的价值•DOE EE,DOE EE,DOE EE,DOE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,DOE EE,则可以增强。将分析生产的烷烃/环烷基流的比率来推断燃料特性•开发的技术将使废物流转换为可调的环烷基流 div>
预计到 2050 年,全球 1060 亿加仑(国内 210 亿加仑)商用喷气燃料市场将增长至 2300 亿加仑以上(美国 EIA 2020a)。具有成本竞争力、环境可持续的航空燃料 (SAF) 被认为是将碳增长与市场增长脱钩的关键部分。可再生和废弃的碳可以为低成本、清洁燃烧和低烟尘产生的喷气燃料提供途径。研究表明,有机会生产燃料,其中芳烃最初通过添加可再生异构烷烃稀释,芳烃随后完全被环烷烃取代,最后引入为喷气燃料消费者提供基于任务的价值的高性能分子。这种燃料途径的关键是从廉价资源中获取三种 SAF 混合原料——异构烷、环烷和高性能分子。从废碳中获取资源时,通常会有额外的好处,例如从湿污泥中获取碳时,水会更清洁;从城市固体废物或塑料废物中获取碳时,进入垃圾填埋场的废物更少。喷气燃料的特性与汽油和柴油不同,因此,如果从最终结果入手,研究将最成功。
通过开环聚合化(ROP)合成的聚合物合成可以追溯到1900年代初,当时Leuchs(1906)描述了N-羧基氢化物的合成,ROP可以通过ROP聚合来制备多肽[1]。后来(1918),将ROP用于从饮食糖开始的多糖合成中[2]。1932年,Carothers等。[3]描述了乳酸(LD)的第一个ROP,以获得现在市场上最突出的聚酯生物塑料之一,Poly(PLA)(PLA)。在1954年,这种方法已获得Du Pont [4]的专利,直到1970年代后期,由于当时的生产特别昂贵,主要用于生物医学应用的背景[5]。In addition to the synthesis of PLA and other polyesters such as poly( ε -caprolactone) (PCL) and poly(glycolic acid) (PGA), contemporary ROP is used to supply industry with a number of other essential polymer materials, including polyethers (such as poly(oxy methylene), poly(ethylene glycol), or poly(tetrahydrofuran)),多硅氧烷,聚磷烯,聚(环辛),聚(氯化烯),由氮杂氨酸或恶唑氨酸单体制成的聚(乙烯亚胺)以及几种果糖酰胺,例如尼龙6 [6,7]。ROP是一种链生长的聚合反应,其中通过与该聚合物的活性末端组的反应通过反应单体打开单体,将环状单体添加到生长的聚合物链中(图7.1A)。使用的循环单体的类型以及所使用的催化剂/引发剂系统将确定生长链的活性端组的性质。各种环状分子可以通过一种或多种ROP机制做出反应。随后终端组的性质确定了发生聚合反应的机制类型。最重要的ROP机制包括自由基,离子(阳离子或阴离子),协调 - 插入,元疗法和酶促[8]。ROP可以适应的一些通用结构包括环烷烃和烷烃以及环中包含杂原子的分子,例如氧气