据报道,垂直外部空腔中的高度稳定的二极管无环状液体染料激光。设计很简单(无需制造过程步骤,不需要流体电路),紧凑(〜cm尺寸)和具有成本效益。报道了18%的光学效率为18%,具有出色的光稳定性 - 在50 Hz处140万脉冲后,没有效率下降,该值与流动系统相当,并且远高于有机固态激光器可实现的值。我们表明,热效应在稳定性和该激光器的动力学上都是中心的。在不同的泵脉冲持续时间/重复速率上详细研究了激光堆积和关闭动力学;他们揭示了脉搏缩短,泵脉冲持续时间和重复速率增加,这被证明是由于热透镜衍射损耗引起的。此激光结构提供了一个非常方便,简单的平台,用于测试或收集解决方案可供处理的增益材料。
致谢 我无法用言语完全表达我对在医学院学习期间给予我鼓励和支持的人的感激之情,但我会尽我所能。首先要感谢 William Damsky 博士,他是世界各地所有有抱负的学术皮肤科医生的不知疲倦的导师和灵感源泉。没有您,这项工作根本不可能完成,我永远感激我有机会在这些项目中为自己开辟一席之地。感谢 Nicole Olszewski LPN,她和 Damsky 博士组成了我们的三人团队,在各个房间之间奔波看望我们的试验参与者,并做了难以量化的幕后工作以推动临床试验的进展。感谢耶鲁临床研究中心团队的其他成员,他们参与了这些试验,让耶鲁的临床研究顺利进行,并且始终把患者放在第一位。感谢学生研究办公室为我的研究工作提供指导和资金。感谢 TWI Biotechnology 和辉瑞公司对这些试验的赞助和支持。还要感谢这些临床试验的参与者,他们不求回报地抽出时间与我们分享他们的生活故事,以推动科学发展并改善对其他患有环状肉芽肿的人的治疗。我还要感谢那些陪伴我一生的人。如果没有我的家人,我就不会有今天的成就,他们是我最无条件的支持,我把他们当作自己的家。妈妈和爸爸——你们为孩子们经历了这么多,但你们给予的爱却是无限的。我们永远都不会感激。菲比和奥黛丽——我从出生以来最好的朋友。菲比,你的个人经历和我的职业轨迹交织在一起,我对你的性格、身份和价值观的力量感到敬畏。奥黛丽,你是我们家庭的中心,你给我们的生活带来了欢笑、文化和恰到好处的态度。尽管我们三人可能会争吵打架,但我们的姐妹情谊从未动摇,我知道你们俩会为我出力,毫无疑问。还要感谢我的表弟卡尔文,他在医学领域开辟了道路。谢谢卢卡斯,你从未动摇对我的支持,看到我的本来面目,并站在我身边。感谢凯瑟曼一家。最后,感谢那些我在耶鲁大学和纽黑文的朋友;我无法一一列举,但特别感谢格洛丽亚·陈、迈克尔·凯姆、斯里贾·科达利、穆兹·穆罕默德·希图、凯里·格林和瑞安·范。
异三聚体G蛋白在细胞信号传导中起着核心作用,充当可切换的分子调节剂。因此,控制G蛋白活性的药理剂对于促进我们对该信号转导系统的理解至关重要。天然二肽FR900359(FR)和YM-254890(YM)是两个高度特异性且广泛使用的异三聚体GQ/11蛋白的抑制剂。传统上,这些化合物通过防止GTPase和Gα亚基的α-螺旋结构域的分离来抑制GDP解离。在这项工作中,我们确定了与异源三聚体G11结合的FR和YM的高分辨率晶体结构,并用它们来解释它们有效抑制G蛋白信号传导的分子基础。值得注意的是,我们的数据表明,FR和YM也充当Gα和Gβ亚基之间界面的稳定剂,充当稳定整个异质三聚体的“分子粘合剂”。我们的结果揭示了未识别的机械特征,这些特征解释了活细胞中FR和YM如何有效地钝化GQ/11信号传导。
DNA 质粒是细胞培养实验中 RNA 和蛋白质传递和表达的重要工具之一。质粒的制备通常涉及繁琐的细菌克隆、验证和纯化过程。虽然可以从合同制造商处设计和订购表达质粒,但当需要大量质粒时,成本可能会过高。我们开发了一种高效的全合成方法和协议,能够在短短 3 小时内生产出包含表达元件的环化 DNA,这些元件可供转染,从而省去了细菌克隆步骤。该协议描述了如何将使用常用软件设计并从其中一个商业制造商处订购的线性双链 DNA 片段作为输入,然后以最少的动手时间有效地环化和纯化该 DNA 片段。作为该原理的证明,我们通过生产表达扩展的 Prime 编辑向导 RNA (epegRNA) 的 DNA 来展示该方法的功能,用于细胞培养基因组编辑。该方法不仅限于基因编辑,还可用于需要表达短 RNA 和蛋白质的各种应用。速度快、成本低、使用方便,将使该方法成为基因编辑工具包中的另一个有价值的工具,而且由于反应简单,该方案可以轻松实现自动化。
摘要:对抗多药革兰氏阴性细菌的新抗生素仍然存在至关重要的需求,这是一种继续影响死亡率的主要全球威胁。脂蛋白信号肽酶II是革兰氏阴性细菌的脂蛋白生物合成途径中必不可少的酶,使其成为发现抗菌药物发现的有吸引力的靶标。尽管已经鉴定出了LSPA的天然抑制剂,例如环状双肽球霉素,稳定性和生产困难限制了它们在临床环境中的使用。我们利用计算设计生成球霉素的稳定的新循环肽类似物。只需要合成和测试12种肽,以产生有效的抑制剂,避免准备大型图书馆和筛选运动。在针对Eskape-E病原体的微稀释测定中,最有效的类似物比球霉素表现出比球霉素相比或更好的抗菌活性。这项工作将计算设计作为对抗抗生素耐药性的一般策略。
Es 可实现删除、插入和碱基替换而不会造成双链断裂 1 。然而,目前的 PE2、PE2* 和 PEmax 效应物(nCas9 与 Moloney 鼠白血病病毒 RT(M-MLV RT)的融合)1 – 3 > 6.3 千碱基 (kb),超出了 AAV 的包装能力。高产量生产如此大的蛋白质或 mRNA(用于核糖核蛋白 (RNP) 或 RNA 递送)也是一项挑战。尽管一些拆分策略已用于递送 Cas9 相关基因组编辑工具 4 ,包括拆分内含肽 5 – 7 和 MS2(参考文献 8 – 10)或 SunTag 11 系链,但大多数拆分方法才刚刚开始应用于 PE 2、12、13。这些元素增加了 PE 系统的尺寸、分子复杂性以及生产和递送负担,并且限制了 PE 开发的组合吞吐量(即核酸酶和 RT 成分的混合和匹配)。pegRNA 优化对于有效的引物编辑也很重要。当前的 pegRNA 是一种结合 RNA,由 sgRNA 和包含 RT 模板 (RTT) 和引物结合位点 (PBS) 的 3′ 延伸组成。尽管在 PE 系统中整合 RNA 分子很简单,但由于 PBS 和间隔区之间不可避免的碱基配对以及潜在的 RTT-支架相互作用,它容易发生 RNA 错误折叠。最后,pegRNA 中的 3′ 末端延伸暴露在外,易受核酸酶降解,这可能会损害 pegRNA 的完整性。虽然 3′ 末端二级结构提高了 pegRNA 的稳定性 14 ,但仍需要进一步努力减少 pegRNA 的错误折叠和不稳定性。
摘要。为了确定乳腺癌的新靶点和治疗方式,我们在文献中搜索了在临床前乳腺癌相关体内模型中有效的环状 RNA (circRNA)。通过我们的搜索,我们确定了 26 个上调和 6 个下调的 circRNA,它们在乳腺癌相关的临床前体内模型中起着作用。我们讨论了已确定的 circRNA 的重建和抑制,以及在化学耐药性、增殖抑制和转移背景下确定的靶点的药物性和验证。由细胞因子和高迁移率族蛋白抑制剂、核因子 ĸB 和 Hippo 信号传导驱动的途径成为肿瘤生长和转移的重要驱动因素。三叶因子 1 在雌激素受体阳性乳腺癌转移中的作用也值得进一步研究。此外,粘蛋白 19 已成为乳腺癌治疗的一个未开发的靶点。
摘要背景:肝细胞癌(HCC)是全球最常见的恶性肿瘤之一。尽管有积极的多模式治疗方案,HCC患者的总体生存率仍然很低。主要内容:环状RNA(circRNA)是真核生物中具有共价闭合结构和组织或器官特异性表达模式的非编码RNA(ncRNA)。它们高度稳定并具有重要的生物学功能,包括充当microRNA海绵、蛋白质支架、转录调节剂、翻译模板和与RNA结合蛋白相互作用。最近的进展表明,circRNA在HCC组织中存在异常表达,并且它们的失调会导致HCC的发生和进展。此外,研究人员还发现一些circRNA可能在临床环境中用作诊断生物标志物或药物靶点。在本综述中,我们系统地评估了HCC中circRNA的特征、生物发生、机制和功能,并进一步讨论了肝癌相关circRNA的当前不足和前瞻性研究的潜在方向。结论:circRNA 是一类新型的 ncRNA,在肝癌的发生发展中发挥重要作用,但其内在机制和临床应用仍需进一步研究。关键词:circRNA,特征,生物发生,功能,机制,肝癌
高温柔性聚合物电介质对于高密度能量存储和转换至关重要。同时拥有高带隙、介电常数和玻璃化转变温度的需求对新型电介质聚合物的设计提出了巨大的挑战。在这里,通过改变悬挂在双环主链聚合物上的芳香侧链的卤素取代基,获得了一类具有可调热稳定性的高温烯烃,所有烯烃均具有不折不扣的大带隙。聚氧杂环丙烷酰亚胺 (PONB) 对位或邻位侧链基团的卤素取代使其具有可调的高玻璃化转变温度(220 至 245°C),同时具有 625–800 MV/m 的高击穿强度。p-POClNB 在 200°C 时实现了 7.1 J/cc 的高能量密度,代表了均聚物中报告的最高能量密度。使用分子动力学模拟和超快红外光谱来探测与介电热性能相关的自由体积元素分布和链松弛。随着对位侧链基团从氟变为溴,自由体积元素增加;然而,由于空间位阻,当处于邻位时,相同侧链的自由体积元素较小。在介电常数和带隙保持稳定的情况下,正确设计 PONB 的侧链基团可提高其高密度电气化的热稳定性。