垂直轴风力涡轮机 (VAWT) 在城市、偏远地区和海上应用的开发中重新引起了人们的兴趣。过去的研究表明,在能量捕获效率方面,VAWT 无法与水平轴风力涡轮机 (HAWT) 竞争。在低叶尖速比 () 下,VAWT 性能受到动态失速 (DS) 效应的困扰,其中每个叶片每转一圈都会超过静态失速多次。此外,对于 <2,叶片在超过 70% 的旋转期间在失速之外运行。但是,VAWT 具有许多优势,例如全向操作、发电机靠近地面、更低的噪音排放以及使用寿命更长的非悬臂叶片。因此,减轻动态失速并改善 VAWT 叶片的空气动力学性能以提高功率效率是近年来的热门研究课题,也是本研究的方向。西弗吉尼亚大学过去的研究重点是增加循环控制 (CC) 技术,以改善 VAWT 空气动力学性能并扩大操作范围。通过增强 NACA0018 翼型以包含 CC 功能,生成了一种新颖的叶片设计。收集了一系列稳定喷射动量系数 (0.01≤C ≤0.10) 的静态风洞数据,用于分析涡流模型性能预测。开发了控制策略以优化整个旋转过程中的 CC 喷射条件,从而提高了 2≤≤5 的功率输出。但是,产生稳定 CC 喷射所需的泵送功率使增强涡轮机的净功率增益降低了约 15%。这项工作的目的是研究脉冲 CC 喷射驱动,以匹配稳定喷射性能和降低的质量流量要求。迄今为止,尚未完成任何实验研究来分析俯仰翼型上的脉冲 CC 性能。本文描述的研究详细介绍了关于稳定和脉冲喷射 CC 对俯仰 VAWT 叶片空气动力学影响的首次研究。实施了数值和实验研究,改变了 Re 、k 和 ± 以匹配典型的 VAWT 操作环境。根据先前流动控制翼型研究的有效范围,分析了一系列降低的喷射频率 (0.25≤St≤4) 和不同的 C 。由于动态失速效应,发现翼型俯仰将基线升阻比 (L/D) 提高高达 50%。当 C =0.05 时,动态失速对稳定 CC 翼型性能的影响更大,在正攻角时 L / D 增加 115%。脉冲驱动可匹配或改善稳定喷气升力性能,同时将所需质量流量减少高达 35%。从数值流可视化来看,脉冲驱动可降低 DS 期间尾流涡度的大小和强度,从而导致相对于基线和稳定驱动情况的轮廓阻力较低。编制了一个俯仰翼型测试数据库,包括气动系数 (C l 、C d) 的过冲和滞后,以改进分析模型输入,从而更新 CCVAWT 性能预测,其中将直接反映上述 L / D 改进。相对于年功率输出为 1 MW 的传统 VAWT,WVU 之前的工作证明,增加稳定喷气 CC 可以将总输出提高到 1.25 MW。但是,产生连续喷气的泵送成本将 CCVAWT 的年度净收益降低到 1.15 MW。目前的研究表明,由于质量流量要求降低,脉冲 CC 喷射可以回收 4% 的泵送需求,从而将 CCVAWT 的年净发电量提高到 1.19 MW,相对于传统涡轮机提高了 19%。
本文解决了实施旋转网络状态的可能性,该旋转网络在循环量子重力方法中用于绝热量子计算机上的Planck量表物理。讨论的重点是应用当前可用的技术并分析D-Wave机器的具体示例。它引入了一类简单的自旋网络状态,可以在D-Wave量子处理器的嵌合图架构上实现。但是,需要超出当前可用的量子处理器拓扑以模拟更复杂的自旋网络状态。这可能会激发绝热量子计算机的新一代。讨论了模拟循环量子重力的可能性,并提出了使用绝热量子计算来求解非变化标量(汉密尔顿)约束的方法。提出的结果为普朗克量表物理学的未来模拟(特定的量子宇宙学配置)建立了基础。
在可再生能源的高渗透下,电网正面临着诸如生产延迟,风能和太阳能放弃等发展问题。随着可再生能源安装的持续增长,例如风能,光伏(PV)以及发电能力的增加,迫切需要在大规模上增加峰值负载和频率调节能力,以减轻大型可再生能源整合引起的消耗问题,然后需要大量的可再生能源集成,然后需要增加相关量和频率调节设备的发电企业。因此,峰值负载和频率调节企业必须对设备资产进行科学成本管理。本文介绍了生命周期成本的概念,发展和观点(LCC)在高估的可再生能源电网中的设备资产管理,并在设备资产管理过程中探究成本收集和估算方案。
肺癌是全球癌症相关死亡的主要原因,可以分为小细胞肺癌和非小细胞肺癌(NSCLC)。NSCLC是最常见的组织学类型,占所有肺癌的85%。NSCLC中常见的Kirsten大鼠肉瘤病毒癌基因(KRAS)突变与预后不良有关,这可能是由于对大多数全身疗法的反应不良,并且缺乏靶向药物。有关新的小分子KRAS G12C抑制剂,AMG510和MRTX849的最新发表的临床试验数据,表明这些分子可能有可能有助于治疗KRAS突变的NSCLC。同时,在免疫治疗过程中,在患有KRAS突变的患者中观察到了免疫效率。在本文中,综述了本文的发病机理,治疗状况,免疫疗法的进展以及KRAS突变NSCLC的靶向治疗。