doi:https://dx.doi.org/10.30919/es8d582评论先进的Mullite Ceramics Romit Roy,Dipankar das *和Prasanta Kumar Rout * Abstract Mullite正在成为最宽敞的氧化陶瓷材料之一,因为其高级结构和功能性的陶瓷物质是其出色的陶瓷物质之一。这样的特性是低密度,低热膨胀,出色的蠕变耐药性,低导热性,高温下的优异强度以及良好的化学稳定性。如今,Mullite在结构,电子,光学和高温等各个领域中具有广泛的应用领域。 mullite存在于骨晶体结构中,具有3AL 2 O 3·2SIO 2的化学计量组成。 本研究概述了Mullite的结构,性质,合成路线,各种现代应用。 在简短的介绍之后,本评论论文重点介绍了mullite的基本晶体结构。 其次,本文处理了Mullite陶瓷的各种属性和应用领域,第三,作者列出了不同的陈述原材料和各种合成途径,以在桌面形式中制造Mullite陶瓷,并尝试编译其他研究人员的研究结果。 最后,这项研究的最后一部分是Mullite陶瓷,Mullite合成挑战和废料利用的各种应用。如今,Mullite在结构,电子,光学和高温等各个领域中具有广泛的应用领域。mullite存在于骨晶体结构中,具有3AL 2 O 3·2SIO 2的化学计量组成。本研究概述了Mullite的结构,性质,合成路线,各种现代应用。在简短的介绍之后,本评论论文重点介绍了mullite的基本晶体结构。其次,本文处理了Mullite陶瓷的各种属性和应用领域,第三,作者列出了不同的陈述原材料和各种合成途径,以在桌面形式中制造Mullite陶瓷,并尝试编译其他研究人员的研究结果。最后,这项研究的最后一部分是Mullite陶瓷,Mullite合成挑战和废料利用的各种应用。
这本独特而现代的教科书专为两学期的高年级本科生或研究生课程而设计,为学生提供物理直觉和数学技能,使他们能够轻松流畅地解决量子力学中的复杂问题。本书首先详细介绍了量子态和狄拉克符号,然后阐述了量子力学的总体理论框架,最后解释了角动量和自旋等物理量子力学特性。本书详细讨论了量子力学中的对称性和群,它们是当前研究的重要组成部分。本书的第二部分侧重于应用,其中包括一章详细的量子纠缠,这是量子力学最令人兴奋的现代应用之一,在量子信息和计算中具有重要意义。书中穿插了大量练习,扩展了关键概念并进一步加深了学生的理解。本书为教师提供了完整的解决方案手册和讲座幻灯片。
电液控制系统的现代应用越来越依赖于系统组件之间的数字通信。向新的数字网络控制系统迈进需要所有组件与同一总线兼容。问题的关键在于数字伺服阀与通用数字网络的完全兼容性。这方面最高水平似乎是 EtherCAT 总线,2011 年用于测试新型飞机空客 350 的飞行控制系统 [1]。这一新概念提出的主要问题是电磁兼容性。这个问题可以借助光通信系统解决。其他问题包括:整个系统的时间响应、相位滞后和衰减。微控制器的扩展温度范围、振动不敏感性和 EMI 兼容性、方向流量控制阀的数字机载电子设备 (OBE) 可以安装在坚固的金属外壳中,并可以在恶劣环境中使用,安装在执行器本身上。这种布置改善了整个系统的响应时间和闭环控制性能。数字控制高响应阀最重要的方面是:灵活性、EMI 敏感性、分布式控制/现场总线集成和
摘要。人工智能(AI)的现代应用正在影响医疗保健方面的发展,这可能通过提高诊断的准确性,定制治疗计划以及提高医疗保健操作的效率,从而导致激进的进步。本研究讨论了AI在医疗保健中的变革性应用,包括如何将机器学习,神经网络,深度学习和自然语言处理等技术用于诊断,个性化医学,预测性分析,虚拟健康助手,手术,手术和康复。同时,AI在医疗保健中的应用构成了许多挑战,例如数据隐私,算法偏见和道德规范。本研究还探讨了AI在全球健康,对政策和法规的需求以及AI对未来医疗保健系统的长期影响。尽管面临多个挑战,但医疗保健体系中AI的持续创新和发展也很好地,将来可以更有效,准确,可访问的医疗保健提供系统。
摘要。卷积神经网络(CNN)是一项在图像处理和计算机视觉应用方面非常重要的技术。CNN的瓶颈是多维卷积,通常需要加速器硬件。这些加速器使用的卷积算法直接影响缩放期间速度增加与硬件资源消耗之间的比率,这是一种称为硬件效率的度量。该指标越低,在较小的性能改进上花费的功率和区域越多。在这篇综述中,我们分析了卷积层中使用的当前验证算法的硬件效率的潜力:大多数现代应用,Toom-Cook卷积和FFT卷积使用的IM2COL卷积。我们的分析揭示了有关硬件缩放的IM2COL卷积的效率低下,并确认了使用Toom-Cook和FFT卷积的硬件有效应用的潜力,每个应用程序都带有警告。此外,我们确定了这些算法的可能硬件应用程序,这些应用程序可以在未来的工作中扩展。
现有的构图特征的现有效应措施对于许多现代应用,例如在微生物组研究中是不足的,因为它们表现出可以通过传统的参数方法对高差异性和稀疏性等性状进行的特质。此外,以公正的方式评估组合物的摘要统计数据(例如种族多样性)如何影响响应变量并不简单。我们提出了一个基于假设数据扰动的框架,该框架定义了对组成本身的可解释的统计功能,我们称其称为平均扰动效应。这些效果自然说明了偏见经常使用边际依赖分析的混淆。我们通过得出依赖摄动依赖性的重复化并应用半参数估计技术来显示如何有效估计平均扰动效应。我们对模拟和半合成数据的经验分析了提出的估计量,并证明了与纽约学校和微生物组数据的数据相比的优势。
构建有用的人工智能 (AI) 系统的一个挑战是,人们需要了解它们的工作原理,以便获得适当的信任和依赖。这已成为一个备受关注的话题,表现为对可解释人工智能 (XAI) 的研究激增。许多研究假设了一种模型,其中人工智能会自动生成解释并将其呈现给用户,用户对解释的理解会带来更好的性能。对解释推理的心理学研究表明,这是一个有限的模型。XAI 系统的设计必须充分参考认知模型和教学模型,基于人们试图向其他人解释复杂系统时会发生什么以及人们试图推理出复杂系统如何工作时会发生什么的经验证据。在本文中,我们将讨论 CS Peirce 的溯因推理概念如何以及为什么是 XAI 的最佳模型。皮尔士关于溯因推理是一种探索性活动的观点可以被认为是由于其与现代应用认知心理学家所开发的专家推理模型相一致而得到支持的。
电液控制系统的现代应用越来越依赖于系统组件之间的数字通信。向新的数字网络控制系统迈进需要所有组件与同一总线兼容。问题的关键在于数字伺服阀与通用数字网络的完全兼容性。这方面最高水平似乎是 EtherCAT 总线,2011 年用于测试新型飞机空客 350 的飞行控制系统 [1]。这一新概念提出的主要问题是电磁兼容性。这个问题可以借助光通信系统解决。其他问题包括:整个系统的时间响应、相位滞后和衰减。微控制器的扩展温度范围、振动不敏感性和 EMI 兼容性、方向流量控制阀的数字机载电子设备 (OBE) 可以安装在坚固的金属外壳中,并可以在恶劣环境中使用,安装在执行器本身上。这种布置改善了整个系统的响应时间和闭环控制性能。数字控制高响应阀最重要的方面是:灵活性、EMI 敏感性、分布式控制/现场总线集成和
大多数现代机器,包括风扇和空调,都是由交流电供电的。必须有一种可靠的方法将直流电转换为交流电,而不会留下任何交流电。为逆变器供电的电子电路完成了这一改进。将直流输入电压转换为具有理想幅度和频率的修改后的交流输出电压是电源逆变器的主要任务。PWM 方法(称为正弦 PWM)被广泛使用。在高频三端传输波逐渐决定逆变器中每个轴的切换状态之前,在此 PWM 方法中比较正弦交流电压参考。逆变器经常用于现代应用,例如变速交流发动机、入伍加热、备用电源和不间断电源。可以一般分类的两种主要逆变器类型是单级和三级逆变器。每种类型都可以使用具有受控开/关操作的设备。为了提供交流输出信号,这些逆变器通常使用节拍宽度平衡控制信号。
电液控制系统的现代应用越来越依赖于系统组件之间的数字通信。向新的数字网络控制系统迈进需要所有组件与同一总线兼容。问题的关键在于数字伺服阀与通用数字网络的完全兼容性。这方面最高水平似乎是 EtherCAT 总线,2011 年用于测试新型飞机空客 350 的飞行控制系统 [1]。这一新概念提出的主要问题是电磁兼容性。这个问题可以借助光通信系统来解决。其他问题包括:整个系统的时间响应、相位滞后和衰减。微控制器具有扩展的温度范围、抗振动性和 EMI 兼容性,方向流量控制阀的数字板载电子设备 (OBE) 可以安装在坚固的金属外壳中,并可在恶劣环境中使用,安装在执行器本身上。这种布置改善了闭环控制中的整体系统响应时间和性能。数字控制高响应阀最重要的方面是:灵活性、EMI 敏感性、分布式控制/现场总线集成和