摘要:从历史上看,精油 (Eos) 的应用方式多种多样,现代科学证实了其抗菌、抗氧化、抗炎和神经保护特性。牛至 (Origanum vulgare) 是精油的重要来源,尤其富含百里酚、香芹酚和 β-石竹烯等化合物,这些化合物有助于其发挥强大的抗菌作用。这些作用包括破坏细菌细胞膜、干扰群体感应和抑制生物膜形成。牛至精油对抗生素耐药和非耐药菌株均有效,例如大肠杆菌、金黄色葡萄球菌和铜绿假单胞菌。这种精油的成分会破坏膜完整性、离子转运、膜表面电荷、生物膜形成和其他生物物理参数,最终导致细胞死亡。研究强调了它在对抗抗生素耐药性方面的潜力,无论是单独使用还是与传统抗生素协同使用。此外,牛至精油有望成为一种天然治疗剂。继续研究其复杂的化学相互作用将进一步阐明其在抗菌治疗中的全部潜力。这篇综述文章介绍了牛至精油抗菌作用的可能机制及其应用前景。
基石物种相对较少,但在各自的生态系统中具有极大的影响。这一概念是由生态学家罗伯特·潘恩(Robert Paine)于1969年首次表达的,并强调了特定物种在维持生态结构中的作用。这源于生态学研究的转变,该研究认识到这些物种对种群动态,竞争相互作用和生物多样性的强大影响。尽管早期研究以捕食者为中心,共同主义者和生态系统工程师越来越多地参与了较新的研究。似乎至关重要的是要找到可以并且必须保留在栖息地或气候变化之前可以保留的钥匙到底物种。他们控制着猎物物种的大小和数量,在其他野生动植物种群中产生相互利益的相互作用,调节许多植物需要昆虫以促进雄性繁殖到雌性的生态系统。Keystone物种在不同水平上的复杂作用(例如遗传分析或遥感)现在比过去的进步要好得多。将传统的生态知识与现代科学融合将有助于提高我们的理解。未来的研究需要加强对我们自然世界中全球保护和健康的跨学科方法的追求。
3。在Spir II之前的信息系统之前,农民的状况,农民依靠一种方法来驾驶气候风险。土著实践虽然历史悠久,但面对不断变化的天气模式,却缺乏一致的准确性。收音机的高级现代预测提供了广泛的信息,通常无法转化为针对特定农场的可行决策。这使农民容易遭受农作物疾病和气候冲击。与Spir II一起,游戏改变者到了。其预警系统无缝将土著知识与现代科学数据融合在一起,从而产生了针对当地需求量身定制的缩放咨询。想象埃塞俄比亚的农民:传统上,他们可能会根据观察到的干燥延迟种植。现在,Spir II的精确预测预测了一个延迟,干燥的季节,敦促他们进一步调整窗户并选择弹性作物。这种积极主动的方法与过去的反应性不同,使农民有能力做出明智的决定,最大程度地减少损失并最大化机会。Spir II的系统代表着飞跃,提供了可行的,特定于社区的信息,将弹性的力量置于最需要它的人的手中。
这篇观点文章深入研究了阴阳理论的新颖融合 - 一个古代中国哲学基石 - 与复杂的免疫学领域。鉴于免疫学固有的复杂概念,许多学生发现理解有关免疫平衡和调节的微妙机制具有挑战性。鉴于中国学生对阴阳理论的深刻理解,我们主张采取一种教育策略,该策略将Yin-Yang框架内的免疫平衡概念背景而来,从而提供了更直观和引人入胜的学习经验。这种方法不仅利用了阳阳的文化意义,而且还对应于其平衡和和谐的原理,从而反映了免疫反应的稳态本质。本文批判性地评估了该技术在中国学生中增强免疫理解的能力,同时也考虑了其局限性。尽管存在这些局限性,但这些看似不同的领域的融合仍然具有增强免疫学教育,促进批判性思维和推进跨文化学术话语的实质性希望。古老的哲学见解与现代科学探索的融合促使免疫学内的教育方法进行了重新评估,强调了一种新颖的教学方法,该方法将传统智慧与当代科学教育联系起来。
在过去的50年中从许多发展中国家积累的证据表明,增强产量的品种是持续农业生产率增长的重要投入,尤其是在土地堆满的国家中,只能通过强化才能实现产量增长(Evenson and Gollin 2003)。但持续的生产率增长不仅需要强大的科学专业知识和良好的植物育种计划。它还需要一个现代种子系统,该系统具有繁殖,普及和分发这些品种的能力和基础设施。虽然现代种子系统有许多不同的设计,但它们都具有一个共同点 - 他们将种子的使用实践从传统方法转移到了农民选择,保存和交换种子的传统方法,到将传统方法与现代科学,公共投资和市场信号整合在一起的系统,以使农民更加系统地获得改善的品种和优质种子。必然,这种转变也意味着种子成为一种经济商品:它成为植物育种者,企业家,销售代表和农民所做的创新努力的体现,创新所获得的收益必须以鼓励持续生产和进一步创新的方式进行分配。制定鼓励生产和创新以使社会受益的政策是决策者的作用。
线性代数和矩阵理论的概念和工具自几年前的成立以来就在量子信息理论领域发挥了作用。随着时间的流逝,这种角色随着这些领域之间的交集而发展[5,12]。在这方面,基本重要性的一个领域是量子纠缠理论,这是量子信息中最具挑战性的主题之一,更普遍地在现代科学中。对量子纠缠的研究从其开始的矩阵理论技术的应用和开发中得到了有益的,其中包括[3、8、9、10、13]给出的作者的许多示例,其中包括一些最近的作品。在本文中,我们通过研究一类重要的量子操作的研究为这项研究做出了贡献,这些操作是通过在矩阵上完全积极的痕量保护图(称为纠缠破裂通道[4,7]通过数学上给出的。,我们通过识别Channels的随机矩阵表示,将两个关键的概念从矩阵理论带到他们的研究中,并以此为基础,我们对基于相应矩阵原始性[6,11]的原始性[14,15]进行了分析[14,15]。更具体地,我们展示了纠缠通道的每种所谓的孔形式如何诱导某些随机矩阵表示,该随机矩阵表示与该通道具有相同的非零频谱。然后,我们证明通道的原始性取决于其矩阵表示的原始性,我们
摘要 . 17 世纪文化大革命后,一些诗人认为科学正在扼杀艺术和诗歌之美。因此,人们认为想象力与科学方法背道而驰。幸运的是,这种观点现在已经被普遍抛弃,想象力在科学中的重要作用终于得到了充分的认可。特别是在材料科学领域,系统的结构和动力学特性通常是无法从其成分中预测的,因为它们通常来自由大量构建块组成的组件的新兴行为,因此想象力被认为是 (i) 思考实验、(ii) 解释实验结果和 (iii) 制备新材料的重要工具。这使得该主题绝对适合典型的翻转课堂方法。年轻的学生可以通过搜索几个世纪以来发生的辩论来首次了解想象力在科学中的应用:可以找到有趣的故事、辩论和有时令人愉悦的方面,这肯定会激发他们对研究的兴趣,直至研究现代复合材料。然后,在学校里,在老师的协调下,这些故事、想法和观点可以得到巩固。在这个范围内,显然跨学科性是一个关键因素,它肯定会从活动中出现。着眼于未来前景,还将报告最终评论和现代研究活动的例子,以展示想象力如何帮助建立智能程序来制备现代科学中的新材料。
摘要:人类微生物群是寄居在各种身体微环境中的复杂微生物组合,在健康和疾病中发挥着关键作用。从历史上看,传统医学通过使用发酵食品和草药隐性地认识到微生物群的重要性,我们现在了解到,这些食品和草药可以影响肠道微生物组成,有助于增强免疫系统和改善代谢过程。在当代,现代科学大大扩展了微生物群的作用。基因组学和生物信息学工具的进步揭示了人类健康与微生物群之间复杂的相互作用,特别是在理解现代药剂的影响方面。最近的研究强调了广谱抗生素的双重作用,它在对抗病原体的同时,也会破坏共生微生物群落,可能导致菌群失调和相关的健康状况。此外,对肠脑轴的新兴研究表明微生物群管理对神经系统疾病具有深远影响,标志着向以微生物群为中心的治疗策略的转变。本综述追溯了微生物组研究的历程,从其历史根源到当前的创新和未来的潜在应用,强调了其在传统和现代医学实践中的重要性。展望未来,微生物组研究有望带来革命性的应用,包括开发基于微生物组的诊断、个性化益生菌治疗以及能够进行精确治疗干预的工程细菌群落。
引言:量子计算是现代科学中最热门的话题之一,它所有望实现的惊人应用远远超出了传统电子计算机的能力范围,至少在某些应用领域是如此 [1]。量子计算的宣言可以追溯到理查德·费曼 (Richard Feynman) 的划时代论文,他在论文中提出了著名的观点:物理学“不是经典的”,因此应该在量子计算机上进行模拟 [2]。根据费曼的观察,量子计算的早期理论工作是在 20 世纪 80 年代进行的,例如 Deutsch 关于量子理论、通用量子计算机和丘奇-图灵原理之间联系的研究 [3]。随后,随着 20 世纪 90 年代中期 Shor 的整数因式分解算法和 Grover 的搜索算法的发表,该研究领域在理论工作和量子计算硬件方面都获得了显著的发展势头。从那时起,量子计算的研究领域一直在持续增长 [4–6]。在量子计算机的应用方面,量子多体系统的模拟最受关注,因为它具有科学和工业应用价值,而且与量子硬件的联系相对紧密,正如费曼最初的提议一样。然而,在本期《观点》中,我们将重点关注一条鲜为人知的领域,即使用量子计算机模拟经典流体 1 。为此,让我们参考由以下四个象限定义的物理计算平面:
摘要:无障碍科学教育中最重要的问题之一是创建一个可供盲人学生或有视力障碍 (VI) 学生使用的实验室工作区。虽然这些学生通常可以参加科学讲座,但他们通常无法充分参与动手实验室工作。目前解决这个问题的重点是提供特殊便利,例如要求有视力的实验室伙伴完成动手工作。尽管近年来现代科学教育中实验室设备的可访问性有所提高,但有视力障碍的学生往往仍然是被动学习者。在这项工作中,我们使用亚马逊网络服务 (AWS)、亚马逊 Alexa 技能套件 (ASK)、Alexa 智能扬声器和微控制器 (Raspberry Pi) 开发了一种新的人工智能工具,即 MSU Denver 虚拟实验室助手 (VLA)。VLA 可以与其他访问技术和设备结合用作实验室中的虚拟助手。VLA 允许有视力障碍的学生仅使用语音控制自行完成动手实验室工作。可以通过任何智能手机或 Amazon Echo 设备访问 VLA,以协助一般的科学实验室程序。VLA 旨在适用于不同的科学实验室工作。它还与其他常见的无障碍电子设备兼容,例如 Talking LabQuest (TLQ)。我们相信 VLA 可以促进 VI 学习者的融入,并有利于一般的无障碍科学教育工作。