1 不来梅大学环境物理研究所,FB 1,P.O.Box 330440,D-28334 不来梅,德国 2 METAIR AG,Airfield Hausen am Albis,CH-8915 Hausen am Albis,瑞士 3 苏黎世应用技术大学,CH-8400 温特图尔,瑞士 4 柏林自由大学空间科学研究所,Carl-Heinrich-Becker-Weg 6-10,D-12165 柏林,德国 5 ESA / ESTEC,Keplerlaan 1,2201 AZ 诺德维克,荷兰
本测试方法是评估建筑构件隔音性能和空间间隔音性能的一套标准的一部分。它旨在使用标准敲击机在现场测量房间之间的撞击声隔离,或估算通过安装在建筑物内部的楼板-天花板隔断构件的撞击声传输的下限。该套件中的其他内容包括在受控实验室环境中测量通过隔离楼板-天花板组件的撞击声传输(测试方法 E492 ),在受控实验室环境中测量隔离隔断构件的空气声传输损失(测试方法 E90 ),在现场测量与建筑构件相关的空气声隔离和空气声传输损失(测试方法 E336 ),在现场测量通过建筑物立面和立面构件的声音传输(指南 E966 );并在受控实验室环境中测量两个房间之间通过公共静压室的声音传输(测试方法 E1414)。
高度范围50-130 km的地球的中层和较低的热层是我们大气中的一个迷人部分。辐射,动力学,微物理和化学过程之间的复杂相互作用产生了几种突出现象,其中许多以中间区域为中心(80-100 km)。这些现象包括夜光云,极性的夏季回声,气象材料的消融和转化以及地球的气流。强烈分层和小规模相互作用是这些现象和中间区域的常见特征。为了在相关的空间尺度上研究相互作用,声音火箭的原位测量对于中层研究至关重要。本文提出了用于发声火箭的新测量技术和分析方法,从而有助于提高我们对这一偏远大气的理解。考虑到需要以1 km/s的典型火箭速度进行测量,因此既有选择性,敏感,精心校准的仪器的设计,又是由于空气动力学影响而引起的。本论文包括对气象颗粒的影响和采样技术的定量空气动力学分析,揭示了由于粒子流动而引起的明显尺寸歧视。对中层冰颗粒种群的光学技术,从而产生了基于短紫外线波长下MIE散射的较小颗粒的仪器概念。此处介绍的工作还为2010年7月的Esrange即将到来的Phocus Rocket运动提供了重要的预研究。火箭传播的共振荧光测量原子氧是严格评估的,从而导致基于O 2气流排放的光度计的新校准概念。phocus(夏季上层中的颗粒,氢和氧化学)将解决三个主要的中层参与者之间的相互作用:陨石烟,夜光云和气相化学。
确保对冲合同以公平的方式进行交易,通过创建一个公平竞争环境来促进竞争,以供发电机和零售商竞争。我们的提案要求绅士以与绅士对其内部零售武器相同的条款提供独立的零售商和发电机访问产品(例如对冲合同),同时保持投资激励措施和供应安全性。这意味着绅士将无法通过例如以比第三方提供的更好的条件来使零售武器获得灵活的生成/对冲合同。
我们提出了根据 Topex/Poseidon 和 ENVISAT 雷达任务的测量结果来定义虚拟站(卫星轨道与水体之间的交叉点)水位高度时间序列的方法。水动力模型的实施使得将流量从几个现场测量站传播到虚拟站成为可能。然后可以在虚拟站估计评级曲线(高度/流量关系),从而可以完成原位测量并致密水文网络;并确定断面平均水深、床底坡度、曼宁粗糙度系数等物理参数。在里奥内格罗河和卡克塔河的主河道上分别引入了 21 个和 11 个虚拟站,使我们能够将流域的大小减少大约 10 倍,现在我们可以通过空间测量来测量流域的流量。
摘要:岬角裂流,有时也称为边界裂流,是冲向从海滩向海延伸的天然或人工障碍物(如岬角或丁坝)的裂流。它们可能是由沿岸流对障碍物的偏转或由于障碍物背风处的波浪阴影导致的沿岸破碎波高变化所驱动的。因此,驱动机制主要取决于波浪相对于天然或人工障碍物的入射角。我们分析了 42 天的速度剖面测量值,这些测量值是在法国西南部安格雷高能中大潮海滩的天然岬角上进行的。在秋冬季节,随着潮位变化,在 6.5-10.5 米深处收集的,离岸显著波高和周期分别为 0.9-6 米和 8-16 秒,波浪入射角范围为 -20 ◦ 至 20 ◦。这里我们分析了对应于大约 24 天测量的偏转裂口配置,其中随着波浪和潮汐条件的变化,流速计交替位于裂口颈部、裂口头部或远离裂口的位置。偏转裂口与较大的离岸定向速度(高达 0.6 米/秒的深度平均速度)和低能至中等能波的潮汐调制有关。发现偏转裂口的垂直剖面从裂口颈部的深度均匀变化到裂口头部离岸深度变化剧烈的变化,最大速度位于表面附近。裂口的极低频运动非常剧烈,范围为 10-60 分钟,主要峰值周期约为 40 分钟,即周期比通常报告的要长。在冲浪区边缘以外测量到的强烈的离岸速度为偏转裂口提供了新的见解,它是海湾(或结构控制的)海滩与内架和/或相邻海湾之间水和沉积物交换的主要机制。
制造应变和随后的残余应力是薄壁结构行为的关键因素,因为它们会引起屈曲、翘曲和失效。本文通过研究使用定向能量沉积的薄壁结构的增材制造,提出了对这些特征进行实验和数值分析的综合方法。使用红外和光学摄像机在整个部件和整个过程中识别制造过程中的温度和平面位移场的现场测量值。与大多数现有方法不同,本文的创新之处在于无需停止制造即可确定位移场,这大大简化了对过程的监控。此外,还开发了该过程的数值建模来研究残余应力的形成。所提出方法的创新之处在于通过将热问题和机械问题解耦,实现了相当短的计算时间,这对于参数研究来说很有趣。结果是相关的,因为计算出的温度和位移场与现场测量值非常吻合。补充屈曲分析还表明,该模型能够预测何时由于过度偏离计划挠度而必须停止制造。因此,所提出的模型可用作选择给定部件的合适工艺参数的工具。
5.2.1. 现场测量.................... ... .................................................................................................................................................................................................................................................................................33 5.2.4. 仪器................. ... . ...
5.2.1. 现场测量.................... ... .................................................................................................................................................................................................................................................................................33 5.2.4. 仪器................. ... . ...
2024 年 10 月 17 日 — ... 标准只是标准尺寸因此,在实际工作进行之前,必须进行现场测量和勘察。 另外,.监督任何认为必要的事项...