图像字幕是一项计算机视觉任务,涉及为图像生成自然语言描述。此方法在各个领域都有许多应用,包括图像检索系统,医学和各种行业。但是,尽管图像字幕进行了重要的研究,但大多数研究都集中在高质量的图像或受控环境上,而没有探索现实世界图像字幕的挑战。现实世界的图像字幕涉及复杂而动态的环境,具有许多关注点,图像通常在质量上非常差,甚至对于人类而言,这也是一项艰巨的任务。本文评估了在不同编码机制,语言解码器和培训程序之上构建的各种模型的性能,使用新创建的现实世界数据集由使用MIT室内场景数据集构建的65多个不同场景类的800多个图像组成。该数据集使用IC3方法字幕,该方法通过汇总来自图像的唯一视图点的标准图像字幕模型所涵盖的详细信息来生成更具描述性字幕。
本文介绍了一种使用心电图 (ECG) 早期检测心脏异常的新型定制混合方法。ECG 是一种生物电信号,有助于监测心脏的电活动。它可以提供有关心脏正常和异常生理的健康信息。早期诊断心脏异常对于心脏病患者避免中风或心脏猝死至关重要。本文的主要目的是检测可能损害心脏功能的关键心跳。首先,改进的 Pan-Tompkins 算法识别特征点,然后进行心跳分割。随后,提出了一种不同的混合深度卷积神经网络 (CNN) 在标准和实时长期 ECG 数据库上进行实验。这项工作成功地对几种心跳异常进行了分类,例如室上性异位搏动 (SVE)、心室搏动 (VE)、心室内传导障碍搏动 (IVCD) 和正常搏动 (N)。所获得的分类结果显示,使用 MIT-BIH 数据库的分类准确率达到 99.28%,F 1 分数为 99.24%,而使用实时获取的数据库的分类准确率下降为 99.12%。
通过 AR、VR、MR 或 XR 技术进行的技能训练可用于练习以下技能:团队合作、时间管理、注意力控制、想象的身体控制、实际工作中的可视化[2]。利用技术进行工作技能训练例如通过电脑游戏,如果游戏内容、信息、情况和模式发生变化,与工作和现实联系起来,那么玩游戏实际上是一种技能训练方式。技术可以分为工具和情况。1)使用技术练习虚拟工具,如虚拟手术、虚拟机器人控制。[3]当学习者需要使用真实工具时,学习者可以流利而正确地使用它。2)利用技术在虚拟情境中进行训练,如消防训练、虚拟战斗、虚拟工厂和虚拟危险区域。[4]当学习者处于
视觉识别生态系统(例如 ImageNet、Pascal、COCO)在现代计算机视觉的发展中发挥了不可否认的作用。我们认为,在这些生态系统出现之前,交互式和具身视觉 AI 已经达到了与视觉识别类似的发展阶段。最近,各种合成环境已被引入以促进具身 AI 的研究。尽管取得了这些进展,但在模拟中训练的模型如何很好地推广到现实这个关键问题仍然基本上没有答案。为模拟到现实的具身 AI 创建一个可比的生态系统提出了许多挑战:(1)问题固有的交互性,(2)现实世界和模拟世界之间需要紧密结合,(3)复制可重复实验的物理条件的难度,(4)以及相关成本。在本文中,我们引入了 R OBO THOR 来使交互式和具身视觉 AI 的研究民主化。 R OBO THOR 提供模拟环境框架
摘要:我们提出了 BEHAVIOR-1K,一个以人为本的机器人综合模拟基准。BEHAVIOR-1K 包括两个部分,分别由“您希望机器人为您做什么?”这一广泛调查的结果指导和推动。第一个部分是定义 1,000 种日常活动,基于 50 个场景(房屋、花园、餐厅、办公室等),其中有 5,000 多个对象,并标注了丰富的物理和语义属性。第二个部分是 O MNI G IBSON,这是一个新颖的模拟环境,它通过逼真的物理模拟和刚体、可变形体和液体的渲染来支持这些活动。我们的实验表明,BEHAVIOR-1K 中的活动是长期的并且依赖于复杂的操作技能,这两者对于最先进的机器人学习解决方案来说仍然是一个挑战。为了校准 BEHAVIOR-1K 的模拟与现实之间的差距,我们提供了一项初步研究,研究如何在模拟公寓中使用移动机械手学到的解决方案转移到现实世界中。我们希望 BEHAVIOR-1K 的人性化本质、多样性和现实性能够使其对具身化 AI 和机器人学习研究有价值。项目网站:https://behavior.stanford.edu。
约翰·阿奇博尔德·惠勒(John Archibald Wheeler)是20世纪最有影响力的科学家之一。他的非凡职业已经跨越了物理学的重大进展,从核时代的诞生到量子计算机的概念。以创造“黑洞”一词而闻名,惠勒教授帮助将重生的重生作为科学的主流分支,引发了随后的天体物理学和宇宙学的爆炸性增长。His early contri- butions to physics include the S matrix, the theory of nuclear rotation (with Edward Teller), the theory of nuclear fission (with Niels Bohr), action-at-a-distance electro- dynamics (with Richard Feynman), positrons as backward-in-time electrons, the universal Fermi interaction (with Jayme Tiomno), muonic atoms, and the collective model核。他独特的思维方式,古怪的机智和对奇异的热爱激发了几代物理学家。
方法:从Shanxi Cancer Hospital收集的晚期非小细胞肺癌的462例患者被随机分配(以7:3的比例)与训练队列和内部验证队列分配。筛选影响患者3年生存的独立因素,并通过使用单因素,然后进行多因素COX回归分析创建预测模型。 使用一致性指数(C-指数),校准曲线,接收器操作特征曲线(ROC)和决策曲线分析(DCA)评估模型的性能。 单独接受化学疗法的收集的患者,以及接受化学疗法与免疫疗法结合的患者使用两组之间的倾向得分匹配,并在筛选的变量中进行了亚组分析。筛选影响患者3年生存的独立因素,并通过使用单因素,然后进行多因素COX回归分析创建预测模型。使用一致性指数(C-指数),校准曲线,接收器操作特征曲线(ROC)和决策曲线分析(DCA)评估模型的性能。单独接受化学疗法的收集的患者,以及接受化学疗法与免疫疗法结合的患者使用两组之间的倾向得分匹配,并在筛选的变量中进行了亚组分析。
深度学习方法有可能减轻放射科医生处理繁琐的,耗时的任务,例如检测和细分病理病变[1],但是在医学成像的背景下对神经网络的培训面临着主要的挑战:它们需要训练大量图像,因为这是很难获得的,因为在许多方面都可以限制医疗信息,并且由于许多方面的范围限制了其他方面的范围。此外,虽然在世界各地的医院数据库中可以提供相对较大的医学图像,但这些图像是未标记的,并且不同的机构以派遣和不均匀的方式保存医疗图像,这使得它们在较大的数据库中收集它们。在这种情况下,从头开始生成医学图像的方法可能引起人们的极大兴趣。生成建模是机器学习的一个子字段,它在产生新的高质量自然图像(例如面部照片[2])方面具有令人印象深刻的精力[2],并应用于语音综合[3]和磁共振图像重建等任务[4]。如果可以教导生成模型来产生现实且多样化的新医学图像,那么它们将具有很有吸引力的潜力,可以显着增加可用于深神经网络培训的图像数量,因此可以帮助提高这些网络的准确性[5-7]。
摘要。本科生或新手程序员经常在编程课程中受到高级和抽象概念的挑战。与构建顺序程序相比,并行和并发编程需要不同的、更复杂的控制流思维模型。现在,多核处理器已成为计算机和移动设备的标准,开发软件以利用这种额外的计算能力的责任现在落在了现代软件开发人员身上。关键词:性能、编程、线程、顺序程序、计算机体系结构。简介本文的目的是通过不仅提供定义和解释,还提供来自现实生活的例子,帮助读者理解什么是并行性和并发性,因为这样会更容易理解。有很多解释,但只有少数能让你对它们有一个很好的认识,其余的都让你感到困惑,然后你放弃理解这两个术语。你甚至不知道你不仅在编程时看到并发和并行性,而且在任何地方、任何时候都看到它。现实生活中的实现想象一下,一个人在图书馆工作,一堆新书到了。他的任务是按作者选择合适的书,然后将它们放到书架上。他完成这项任务的方式是遵循正确的步骤。他会从所有书中挑选出由同一作者写的书。将它们带到相应的位置后,他会将它们排列在书架上。为了使这个过程更有效率,他可以实施并行技术,使用两名工人并让他们同时工作。这样,他将减少两倍的时间。当然,如果他想使这项工作更有效率,他可以使用更多的工人。关于并行性,需要了解的一件重要事情是,有时您无法获得预期的性能提升,因为您可能会遇到瓶颈,这种情况发生在资源(书籍)繁忙且第二名工人无法选择所需书籍时,这就是为什么您可能会浪费与使用一名工人时相同的时间。现在,如果您想更好地优化,可以使用并发方法。因此,在进入这个主题之前,先定义什么是并发,因为很容易将并发与并行混淆,我们必须从一开始就尝试明确两者的区别: - 并行是指同时做很多事情。 - 并发是指同时处理很多事情。 并行 并行意味着在多个硬件(核心、机器等)上执行多个任务,这就是为什么这些任务并行运行并且尽可能快地执行。 并行计算机是一种在协作中使用同时处理元素的计算机或系统
摘要:近年来,技术彻底改变了生活的所有领域。由于编程是软件技术的核心,因此,对程序员的需求也必须日复一日地增加。随着增强现实(AR)和计算机视觉(CV)领域的进步,我们现在可以为教育领域的独特体验开发应用程序。本研究旨在为小学生开发一种学习编程技能的游戏。为学生提供了作为我们游戏标记的卡片。每个标记在AR中都具有独特的编程块,这会导致我们的游戏角色执行一定的动作。学生需要以正确的方式放置这些块才能完成给定的任务。因此,它使学生能够以吸引他们的方式学习一些基本的编程技能。