摘要:近年来,技术彻底改变了生活的所有领域。由于编程是软件技术的核心,因此,对程序员的需求也必须日复一日地增加。随着增强现实(AR)和计算机视觉(CV)领域的进步,我们现在可以为教育领域的独特体验开发应用程序。本研究旨在为小学生开发一种学习编程技能的游戏。为学生提供了作为我们游戏标记的卡片。每个标记在AR中都具有独特的编程块,这会导致我们的游戏角色执行一定的动作。学生需要以正确的方式放置这些块才能完成给定的任务。因此,它使学生能够以吸引他们的方式学习一些基本的编程技能。
摘要:我们提出了 BEHAVIOR-1K,一个以人为本的机器人综合模拟基准。BEHAVIOR-1K 包括两个部分,分别由“您希望机器人为您做什么?”这一广泛调查的结果指导和推动。第一个部分是定义 1,000 种日常活动,基于 50 个场景(房屋、花园、餐厅、办公室等),其中有 5,000 多个对象,并标注了丰富的物理和语义属性。第二个部分是 O MNI G IBSON,这是一个新颖的模拟环境,它通过逼真的物理模拟和刚体、可变形体和液体的渲染来支持这些活动。我们的实验表明,BEHAVIOR-1K 中的活动是长期的并且依赖于复杂的操作技能,这两者对于最先进的机器人学习解决方案来说仍然是一个挑战。为了校准 BEHAVIOR-1K 的模拟与现实之间的差距,我们提供了一项初步研究,研究如何在模拟公寓中使用移动机械手学到的解决方案转移到现实世界中。我们希望 BEHAVIOR-1K 的人性化本质、多样性和现实性能够使其对具身化 AI 和机器人学习研究有价值。项目网站:https://behavior.stanford.edu。
计算机视觉技术在自动驾驶汽车的感知堆栈中起着核心作用。使用此类方法来感知给定数据的车辆周围环境。3D激光雷达传感器通常用于从场景中收集稀疏的3D点云。然而,根据人类的看法,这种系统努力鉴于那些稀疏的点云,因此很难塑造现场的看不见的部分。在此问题中,场景完成任务旨在预测LiDAR测量中的差距,以实现更完整的场景表示。鉴于最近扩散模型作为图像的生成模型的有希望的结果,我们建议将其扩展以实现单个3D LIDAR扫描的场景。以前的作品使用了从LiDAR数据提取的范围图像上使用扩散模型,直接应用了基于图像的扩散方法。差不多,我们建议直接在这些点上操作,并介绍尖锐的和降解的扩散过程,以便它可以在场景规模上有效地工作。与我们的方法一起,我们提出了正规化损失,以稳定在denoising过程中预测的噪声。我们的实验评估表明,我们的方法可以在单个LIDAR扫描中完成场景,作为输入,与最新场景完成方法相比,产生了更多详细信息的场景。我们认为,我们提出的扩散过程公式可以支持应用于场景尺度点云数据的扩散模型中的进一步研究。1
资料来源:国家研究伦理委员会。可在以下网址提供:https://www.forskningsetikk.no/resurser/fbib/forskning-samunn/xenotransplantation/(访问:2023年4月17日)大型医疗词典。可用:https://sml.snl.no/xenotransplantation(访问:2023年4月17日)fda:https://www.fda.gov/vaccines-blood-biologics/xenotlansplantation(访问:访问:19th I202023) https://www.forskningsetikk.no/en/resources/the-research-ethics-library/the-resarsocietal-relationshiphip/xenotransplantation/https://www.ncbi.ncbi.ncbi.nl.nlm.m.nlm.nlov.nlov.nlov.nlov.nlov词典。可在以下网址提供:异种移植 - 大型医疗词典(SNL.NO)(访问:2023年4月19日)PubMed。可用,网址为:基因工程猪在异种移植研究中的作用 - PubMed(NIH.GOV)(访问:2023年4月19日)图:可用:https://www.frontiersin.org/arto2 (访问:2023年4月19日)图:可在以下网址提供:https://www.bbc.com/news/health-60681493(访问:2023年4月19日) https://nypost.com/2022/03/05/how-pig-organ-transplants-will-save-th-save-th-save-thssands-of-human-lives/(已访问:2023年4月19日)。可用:https://illustoon.com/?id=2528(访问:2023年4月19日)
人类的生命中有铰接的物体。对清晰的物体的综合理解,即外观,结构,物理特性和语义,将使许多研究社区受益。作为当前的符号对象理解解决方案通常是基于具有无物理属性的CAD模型的合成对象数据集,从而阻止了在视觉和机器人任务中的实现对现实世界应用的满足概括。为了弥合差距,我们提出了AKB-48:一个大规模的对象k nowledge b ase,由48个猫咪的2,037个现实世界3D 3D铰接式对象模型组成。每个对象由知识图Artikg描述。为了构建AKB-48,我们提出了快速的发音知识建模(FARM)管道,可以在10-15分钟内满足铰接对象的Artikg,并在很大程度上降低了Real
环境质量的下降是人口快速扩张和使用自然资源的不可避免的结果,对全球和局部生物多样性构成了严重的危险(Malcolm等,2006; Pimm等,2014)。必须平衡经济增长和生物多样性保护;但是,这可能很困难,需要确定和优先考虑生物多样性保护(Hughes,2017a)。Kitanglad和Kalatungan Mountain Ranges,被称为该省的神圣地点,并被联合国教科文组织认可,位于Bukidnon。该省是环境与自然资源部环境局在生物学上受到威胁的五条河流系统的所在地(Lubos,2023年)。棉兰老岛是菲律宾的著名群岛,以其丰富而独特的生物多样性而闻名。尽管承认该物种在该地区的生态意义,但仍需要采取进一步的保护措施来保护IT(Cruz等,2023)。
想象一个小工具,允许雇主通过隐藏在键盘或鼠标内的微小电极来监视其工人的脑电波,该电极发送实时显示以评估情绪,警觉性,压力和生产率水平。不久前,您认为这个概念太牵强了,无法认真考虑。但是神经科学和人工智能的进步正在融合 - 有人说,增长是“类固醇” 1-提供了负担得起且可广泛的神经技术设备,这些设备将很快成为普遍存在的工作环境的常规部分。我们研究了当今正在开发的神经技术的开创性工作场所应用,包括有可能帮助发现和帮助早期干预工作,以解决疲劳,倦怠,欺诈,欺诈,商业秘密盗用以及其他可严格的工作场所活动,以及提高生产力和工人的发展。,但也存在明显的固有道德风险,法律问题和忧虑,集中在可能不负责任地使用这种强大的技术。法律风险包括与生物识别数据收集,工作场所隐私以及感知或实际残疾歧视有关的风险,以及其他问题。随着科学和技术进入未知领域,雇主将不得不第一次解决这些法律问题,通常很少有先例或指导。
RodrigoSánchez-Bayona,医学博士博士医学肿瘤学,Octubre(西班牙马德里)ENSO年轻肿瘤学家委员会成员
对大脑的基于工作的学习●在一项研究中,“ VR增强了局部相互作用,激活了功能模块之间的更健壮和广泛的途径,并改善了全球整合,全球隔离和同时的局部隔离”*●“虚拟现实(VR)模拟了一个人工感觉世界,在该世界中,用户可以与各种虚拟项目和环境进行交互,并成为一种集成的刺激,尤其是在皮质系统中……。这种灵活,沉浸式和用户友好的交互技术可以改善认知和记忆功能……●通过激活神经可塑性来实现这种功能改进,这是Cortex编码体验并学习新行为并响应环境变化的新行为的过程“…