注:1. 工业热能脱碳——解决气候变化的重要难题 (CleanTech for Europe, 2023) | 2. 欧洲电力晴雨表 2024 | 3. 气候行动追踪巴黎协定兼容行业基准 (2020) | 4. 基于部署热泵和电转热技术在热量需求较低的行业的假设。| 5. 基于 Global ETES Opportunity 的 CAPEX 假设 (Systemiq, 2023) | 6. 假设 VRE 组合中风能和太阳能光伏的平衡比例为 70%,海上风电的 CAPEX 为 2300-2800 欧元/千瓦时,公用事业规模太阳能光伏的 CAPEX 为 800-1200 欧元/千瓦时,来源于欧盟委员会经济和金融事务总司:电力市场可再生能源的发展 (2023) | 7. 数据根据全球 ETES 机会 (Systemiq, 2023) 针对欧盟进行了校准 | 8. 基于西班牙和德国部署的热能存储项目的 3 个案例研究。专用 VRE 和电网电力使用比例的技术细节尚不可用。| 9. 假设电转热技术的效率为 95%,VRE 专用于供应电转热技术,LCOE 来自全球 ETES 机会 (Systemiq, 2023) 和世界能源展望 2024 (IEA)
无论是对于以月球为中心的阿尔忒弥斯任务还是未来的火星运输任务,减少物流质量、体积和机组人员用于物流管理的时间的技术都非常重要。美国宇航局先进探索系统的物流减少项目正在开发可使各种探索任务受益的技术。物流减少技术包括改进紧凑型厕所以高效收集废物和稳定垃圾压实,这将在消耗品转化为废物时保持卫生的可居住体积。Gateway 和 Artemis 任务都将由定期的载人期和相当长的休眠期组成。火星运输飞行器的组装也包括定期的载人任务阶段和更长时间的无人任务阶段。射频识别 (RFID) 自主跟踪和定位将减轻机组人员的库存管理职责,这在时间紧迫的机组人员期间尤为重要,并确保在访问元素之间转移正确的物品,尤其是那些注定要处理的物品。库存跟踪与机器人操纵货物的能力相结合,可以在机组人员到达之前或离开之后配置探索栖息地,从而可以更好地专注于科学和其他任务目标。机器人货物操纵可扩展到更广泛的栖息地维护应用。本文介绍了正在开发的技术的状态,将它们与探索任务技术差距和增强功能进行了映射,并解释了它们将在何处得到验证。7
结核病是全球因感染而导致死亡的主要原因。因此,控制结核病疫情是全球公共卫生的当务之急。流行病学模型表明,尽管结核病的药物治疗不断改善,但世卫组织控制疾病传播的时间表需要一种能够预防结核病的新疫苗,特别是在青少年和成年人中。耐多种药物的菌株的传播使疫苗开发工作更加紧迫,但开发比 BCG(全球唯一获准使用的结核病疫苗)适用性更广、疗效更好、持续时间更长的新疫苗的尝试已被证明具有挑战性。临床疗效试验的结果,特别是使用佐剂蛋白亚单位疫苗 M72/AS01E 预防结核分枝杆菌感染者的结核病的已完成的 2b 期试验,给人带来了希望。我们回顾了结核病候选疫苗的现状,并概述了正在进行的多样化疫苗开发。
1995年,Hellman等提出了寡转移的概念(1),指转移灶数量有限的晚期癌症,是介于局部晚期癌症和全身广泛转移之间的中间疾病状态,是一类有治愈可能的患者。基于这一概念,人们开始探索全身和局部相结合的多学科治疗策略。放射治疗是寡转移局部治疗的主要方式,除了追求治愈效果外,从补充和协同全身治疗的角度来看,放射治疗具有重要意义。在日本,寡转移的立体定向放射治疗(SBRT)自2020年4月起已纳入医保。但关于寡转移手术治疗的疗效和有效性的报道有限。除某些转移器官外,肺癌远处转移灶的切除一直被认为是标准治疗的偏离。但临床上多以手术治疗为主,如肺癌术后合并间质性肺炎患者孤立性肺转移灶楔形切除术。寡转移灶的治疗可通过明确手术治疗的指征来系统化。本文将介绍肺癌寡转移灶目前的证据和共识,并对手术治疗的有效性和前景进行综述。