摘要 骨细胞在骨骼中起着指挥官的核心作用,可以调节骨重塑过程。虽然已知骨细胞是从成骨细胞分化而来的,但对骨细胞分化机制的了解仍然很少。本研究的目的是利用三维 (3D) 细胞培养技术阐明骨细胞的分化能力。我们首先通过调整圆底孔中传代培养细胞的数量,制作了一个由小鼠成骨细胞样细胞重建的自组织球体。与传统的二维 (2D) 单层模型相比,3D 球体在 2 天内在体外表现出更高的骨细胞基因表达。作为尺寸依赖性实验的结果,成骨细胞样细胞可能存在适当的细胞-细胞和细胞-ECM 相互作用,以 3D 球体培养的形式诱导骨细胞生成。此外,本模型表明,在经过 7 天的长时间培养后,球体仍能发挥出长期的骨细胞分化能力。总之,我们描述了由成骨细胞样细胞重建的自组织骨细胞球体,并进一步提出了该球体作为一种新的体外组织工程骨细胞模型的潜在应用。
肿瘤球体是无血管肿瘤生长的体外实验模型。与传统的二维培养物相比,肿瘤球体更紧密地模仿无血管肿瘤微环境,其中养分可用性的空间diûerence强烈影响生长。我们表明,使用明显的Diûer数量的细胞生长到相似的限制大小,这表明血管肿瘤具有极限结构。与肿瘤球体经典数学模型的未经测试的预测一致。我们开发了一种新型的数学和统计框架,以研究从用荧光细胞周期指示器转导的细胞中播种的肿瘤球体的结构,使我们能够区分被捕的和循环细胞并识别被捕的区域。我们的分析表明,瞬态球体结构与初始球体大小无关,并且极限结构可以独立于播种密度。标准实验协议比较球体大小与时间的函数;但是,我们的分析表明,将球体结构与总体大小的函数进行比较会产生对球体大小的变异性相对不敏感的结果。我们的实验观察是使用两种黑色素瘤细胞系进行的,但是我们的建模框架适用于各种球体培养条件和细胞系。
a b s t r a c t在他的1856年亚当斯奖(Adams Prive)文章中,詹姆斯·克拉克·麦克斯韦(James Clark Maxwell)证明了土星的戒指不能由统一的僵硬的身体组成。这是环和行星之间两体重力相互作用导致不稳定的结果。同样,也已经知道,由于牛顿的外壳定理,所谓的戴森球将不稳定。在这里报告了一个令人惊讶的发现,在受限的三体问题中,环和球体(壳)都可以稳定。首先,如果在轨道上考虑了两个主要的质量,则在其公共质量中心,一个较大的,均匀的有限环,封闭质量较小的质量的质量原则在某些条件下可以稳定。同样,如果球体在某些条件下再次包围了两个主要质量的较小质量,则dyson球可以稳定。这些发现将麦克斯韦的结果扩展到环的动力学上,并在所谓的ringworlds和dyson球体上具有有趣的轴承。此外,存在这种大规模结构的被动稳定轨道的存在可能对所谓的技术签名有影响,以寻求事质外智能研究。
在过去的15年中,在伊朗和该地区的人道主义部门工作,主要关注受影响的人口,难民和减少灾难风险,我在项目周期管理和响应的各个步骤和方面都有动手实践经验。我获得并使用了参与性,基于社区的和基于结果的方法以及资源动员知识。我职业生涯的大部分时间都在国际部门,并与东道国政府紧密合作。我的旅程从现场工作到制定策略和制定新计划。我相信多学科团队和部门间合作。我一直在努力发展不同利益相关者从受影响的人到高级决策者的能力。我支持联合国机构在伊朗的计划超过10年。我对Sphere,CHS和HSP的承诺以及我的专业背景,激励我努力工作以实现可持续发展目标,并与各种利益相关者合作。
药物筛查[10]。我们使用3D打印技术在微米尺度上打印带有精细结构的树脂模具,然后我们使用印刷模具来塑造普通96孔板的细胞培养物中的琼脂糖底物,以获得特殊的结构,例如微孔和液体交换平台。最后,使改良的96孔板实现
图 6. 球体的加权噪声 LSP(SNR = 3)与模拟 LSP 的比较。后者的特性是通过谱法和非线性回归获得的,并在图例中呈现。谱方法的 MSE 和 log(MSE) 分别为 0.493 和 −0.307 ,而回归方法的 MSE 和 log(MSE) 分别为 0.198 和 −0.703 。
球体是单个或多细胞类型的简单3D簇。三维细胞聚集体比传统的二维细胞培养物提供了体内条件的更准确的表示。因此,由于与2D培养系统相比,球体已经成为一种新的细胞培养模型。此外,对球体形成的研究使我们深入了解疾病建模,包括模仿肿瘤,组织工程和药物发现中的干细胞研究。
摘要:传统上,二维 (2D) 单层细胞培养模型因其易用、简单和低成本而被用于研究体外条件。然而,最近,三维 (3D) 细胞培养模型得到了广泛研究,因为它们为研究各种疾病行为、细胞活动和药物相互作用提供了更好的生理相关性。通常,小尺寸的肿瘤球体模型 (100-500 µ m) 用于研究各种生物和物理化学活动。更大的毫米级球体模型对于模拟原生肿瘤微环境 (TME) 越来越受欢迎。在这里,我们评估了使用无喷嘴、超高分辨率打印机制作的支架生成的超大球体模型 (~2000 µ m) 的使用情况;这些模型用于评估分子阿霉素 (DOX) 和两种 Doxil ® 类似物 (Dox-NP ®、Doxoves TM ) 对 MDA-MB-231 和 MCF-7 乳腺癌细胞系的化疗反应。为了提供比较基线,使用 MCF-7 乳腺癌细胞系的自聚集方法开发了小球体模型 (~500 µ m),并进行了类似的药物治疗。对大和小 MCF-7 球体的分析表明,Dox-NP 往往具有最高水平的抑制,其次是分子阿霉素,然后是 Doxoves。讨论了使用这些类型的超大球体进行癌症研究的实验优势和缺点。
简介。- 一词“结构化光”是指具有非平凡且有趣的幅度,相位和/或极化分布的光场。大量工作已致力于生产结构化的光场,从而导致了新技术的发展和改进现有技术[1,2]。也许结构化光的最著名示例对应于携带轨道角动量的梁,广泛用于从量子光学到显微镜的应用中[3,4]。当前的工作着重于所谓的结构化高斯(SG)梁的结构梁的子类[5-8]。这些对近似波方程的解决方案具有自相似的特性,这意味着它们的强度曲线在传播到缩放因子时保持不变。sg梁包括众所周知的laguerre-gauss(lg)和雌雄同体 - 高斯(HG)梁[9],它们一直是广泛研究的主题,用于许多应用中的模态分解,例如模式分类和分量额定定位[10-13]。lg和Hg梁属于更广泛的SG梁,称为广义的Hermite-Laguerre-Gauss(HLG)模式[14,15],可以使用适当的圆柱形透镜(Attigmatic Translions)[16]来从HG或LG梁上获得。这些模式可以表示为模态Poincar´e球的表面上的点(MPS)[17-19],如图1。这种表示形式导致了这样的见解:这些梁可以在一系列散光转换上获得几何阶段[7,20 - 23]。HLG模式的MPS表示揭示了其固有的组结构和转换属性。这种结构的概括是将模态结构和极化混合[24]。但是,没有为无限的
在大气压下最容易发生气体排放的地方是d p = 7.5m[1]。在干燥空气中的本实验中,p =1105 pa时的间隙D为7.8℃,而在相对湿度为30%至40%的房间空气中,间隙D为4.6m,在p = 1×10 5 pa [12]。可以得出结论,如果销钉表面和磁盘表面之间的间隙之间的实验测量值与对平行电极计算的间隙非常吻合,如果围绕真正的滑动接触的复杂几何形状以及真实尖端与理想形状的偏差的偏差正在考虑。这个