可充电金属阳极电池是有希望的锂离子电池开发。然而,金属阳极与电解质的高反应性导致形成固体 - 电解质相间(SEI)。电解质设计是控制金属阳极电池中SEI组成的关键手柄,但是我们对电解质(特别是阳离子的第一个协调球)的理解是有限的。在本文中,对离子溶剂化和络合技术的研究将其带入电池电解质的背景下。在一组偏光溶剂中,总结了文献中的相关数据,并补充了溶液(δsol H)的焓(δsol H)和转移(δTrh)测量的焓(δTrh)测量。通过考虑溶剂和阴离子特性,尤其是溶剂捐赠和阴离子的大小,观察到的趋势是合理化的。使用一组示例电解质来实现LI +配位球,等温滴定量热法(ITC)和电位滴定(PT),以探测Li +协调复杂的较弱的溶剂的热力学演化,该溶剂是由弱溶剂的较弱的溶剂所取代的,该溶剂是由强度溶剂替代的。拉曼光谱法用于确认溶剂位移是按预期发生的,并且研究了阴离子对ITC测量的影响。开发了一个统计结合模型,该模型符合实验滴定数据,以提取Gibbs自由能(ΔG),焓(ΔH)和熵(ΔS)的平均变化。使用此方法对EC的优先溶剂化趋势进行了量化的EC:DMC和EC:PC电解质,并与其他工人观察到的偏好进行了比较。本论文为将来的有关更复杂的电池电解质配位环境的热力学研究及其与SEI组成的联系提供了一个框架。
肿瘤球体是无血管肿瘤生长的体外实验模型。与传统的二维培养物相比,肿瘤球体更紧密地模仿无血管肿瘤微环境,其中养分可用性的空间diûerence强烈影响生长。我们表明,使用明显的Diûer数量的细胞生长到相似的限制大小,这表明血管肿瘤具有极限结构。与肿瘤球体经典数学模型的未经测试的预测一致。我们开发了一种新型的数学和统计框架,以研究从用荧光细胞周期指示器转导的细胞中播种的肿瘤球体的结构,使我们能够区分被捕的和循环细胞并识别被捕的区域。我们的分析表明,瞬态球体结构与初始球体大小无关,并且极限结构可以独立于播种密度。标准实验协议比较球体大小与时间的函数;但是,我们的分析表明,将球体结构与总体大小的函数进行比较会产生对球体大小的变异性相对不敏感的结果。我们的实验观察是使用两种黑色素瘤细胞系进行的,但是我们的建模框架适用于各种球体培养条件和细胞系。
由于最近的事件和工作安排的不断变化,广场英里正在不断发展,以确保它继续成为人们想要生活,工作和参观的地方。通过这种总体的“目的地城市”方法,该城市公司决心提供有吸引力且相关的便利设施,以便它继续成为国际公认的商业和旅游目的地。体育设施,活动和参与为城市公司提供了无与伦比的机会,可以接触广泛而多样的受众,并展示我们在全球景观中的相关性。运动还可以为一系列收益做出积极的贡献:
摘要:背景:高危神经母细胞瘤患者的结果仍然很差,并且迫切需要新的治疗策略。RIST方案代表了一种新型的计量和多模式治疗策略,用于将分子靶向药物作为“预处理”与常规化学疗法主链结合的高危神经细胞瘤,目前在II期临床试验中进行了评估。用于临床前药物测试,与mo-nolayer培养物相比,癌细胞的生长是球体的优势,因为它重现了广泛的肿瘤特征,包括三维结构和癌症干细胞(CSC)特性。这项研究的目的是建立一个神经母细胞瘤模型,以严格评估RIST治疗方案。方法:通过mRNA和蛋白质分析和球体生存能力通过基于发光的测定进行评估CSC标记表达。通过组织微阵列分析和患者数据挖掘评估RNA结合蛋白LA在神经母细胞瘤中的异常表达。结果:与单层培养物相比,球体培养物显示出较高的CSC样标记(CXCR4,Nanog和BMI)亚组的表达和更高的THR389磷酸化表达。球体靶向分子的“预处理”降低了肿瘤信号传导和CSC标记表达。结论:RIST治疗方案有效地降低了以晚期CSC特性为特征的神经母细胞瘤球体的活力。
神经纤维瘤病1型(NF1)患者会出现一系列良性和恶性肿瘤,其中恶性外周神经鞘肿瘤(MPNST)和高级神经胶质瘤(HGG)的预后令人沮丧。NF1患者中约有15–20%发生脑肿瘤,其中三分之一出现在视觉途径之外。这些非光途径胶质瘤更有可能发展为恶性肿瘤,尤其是在成年人中。尽管频率低,但高级神经胶质瘤对NF1患者的发病率有不良影响。尚未在NF1-Associ-ated HGG上进行体外药物组合筛查,从而阻碍了我们开发知情临床试验的能力。在这里,我们介绍了第一个体外药物组合筛选(单独使用21种化合物或与MEK或PI3K抑制剂结合使用),在唯一的人NF1患者衍生的HGG细胞系上,以及源自NF1-P53基因工程模型的三个小鼠神经胶质瘤细胞系上,散发出HGG。这些小鼠神经胶质瘤细胞系从未暴露于血清,随着球体的生长和与少突胶质细胞前体细胞(OPC)谱系相一致的表达标记。重要的是,即使HGG的原始单元仍然难以捉摸,它们也被认为是由OPC谱系引起的。我们在3D球体生长测定中评估了三种鼠神经胶质瘤细胞系的药物敏感性,这更准确地反映了体内药物敏感性。令人兴奋的是,我们确定了针对HDACS,BRD4,CHEK1,BMI-1,CDK1/2/5/9的六种化合物,以及在我们NF1相关的HGG中有效诱导细胞死亡的蛋白酶体。此外,这些抑制剂中的一些与MEK或PI3K抑制剂协同起作用。这项研究构成了对有希望的目标进行进一步临时评估的基础,最终希望将其转化为诊所。
三维 (3D) 神经细胞培养物本身就适合高通量网络电生理学研究,以比二维神经网络更现实的架构复杂性研究健康和疾病状态下的大脑功能。癫痫是脑网络疾病的象征,因为它反映了异常的电路重组和超同步,导致突然和不受控制的放电(癫痫发作)。迄今为止,对癫痫特征的建模依赖于对细胞、离体脑组织或完整动物的药理学、离子或基因操作,无法重现大多数由未知原因引发的癫痫。在这里,我们报告了在生理条件下培养的啮齿动物原代海马细胞球体中自发出现的癫痫样模式,即在没有已知起始刺激的情况下,通过微电极阵列电生理学检测到。从 DIV10 到 DIV35 出现了三种不同的电表型,即发作间期(癫痫发作之间)、发作期(癫痫发作)或混合型。特别是,强直阵挛性发作放电在 DIV28-35 时最为突出。这些模式表现出的电图和光谱特征与体外和体内啮齿动物癫痫模型以及耐药性癫痫患者的海马中观察到的特征非常相似。值得注意的是,并非所有球体都表现出全面的发作活动,这与尚未解答的问题相呼应,即为什么大脑会癫痫发作并产生癫痫。这一证据表明,应谨慎使用海马细胞再生疗法,因为它们可能会引发癫痫;同时,海马球体可作为还原模型,支持涉及海马的癫痫综合征的高通量临床前研究。
骨肉瘤患者在初次诊断时即出现明显转移,其 5 年生存率不足 20%。TP-3 是一种鼠类 IgG2b 单克隆抗体,对骨肉瘤细胞表面膜抗原 p80 上的表位具有高亲和力。肿瘤相关抗原 p80 在骨肉瘤中过度表达,在正常组织中的表达非常低。我们提出了一种新型双阿尔法靶向溶液,该溶液包含来自同一衰变链的两种放射性核素,包括骨趋向性 224 Ra 和癌细胞表面趋向性 212 Pb-TCMC-TP-3,用于治疗成骨性骨癌、循环癌细胞和微转移。在这项体外研究中,研究了 212 Pb-TCMC-TP-3(单 α 溶液)和 224 Ra/212 Pb-TCMC-TP-3(双 α 溶液)在模拟骨肉瘤微转移性疾病的多细胞球体模型中的细胞毒性作用。直径为 253 ± 98 µ m 的 OHS 球体分别用 4.5、2.7 和 3.3 kBq/ml 的 212 Pb-TCMC-TP-3 处理 1、4 和 24 小时,在 3 周内崩解。212 Pb-TCMC-TP-3 诱导的球体倍增时间延迟了 7 倍,而非特异性 212 Pb-TCMC-利妥昔单抗的剂量则高出 28 倍。 224 Ra/ 212 Pb-TCMC-TP-3 分别在 5 kBq/ml 孵育 4 小时和 24 小时后,在 3 周和 2 周内完全分解了直径为 218–476 µ m 的球体。与未结合的 224 Ra/ 212 Pb 相比,用 1 kBq/ml 224 Ra/ 212 Pb-TCMC-TP-3 处理 24 小时可导致球体活力降低 11.4 倍。
图 6. 球体的加权噪声 LSP(SNR = 3)与模拟 LSP 的比较。后者的特性是通过谱法和非线性回归获得的,并在图例中呈现。谱方法的 MSE 和 log(MSE) 分别为 0.493 和 −0.307 ,而回归方法的 MSE 和 log(MSE) 分别为 0.198 和 −0.703 。
摘要:传统上,二维 (2D) 单层细胞培养模型因其易用、简单和低成本而被用于研究体外条件。然而,最近,三维 (3D) 细胞培养模型得到了广泛研究,因为它们为研究各种疾病行为、细胞活动和药物相互作用提供了更好的生理相关性。通常,小尺寸的肿瘤球体模型 (100-500 µ m) 用于研究各种生物和物理化学活动。更大的毫米级球体模型对于模拟原生肿瘤微环境 (TME) 越来越受欢迎。在这里,我们评估了使用无喷嘴、超高分辨率打印机制作的支架生成的超大球体模型 (~2000 µ m) 的使用情况;这些模型用于评估分子阿霉素 (DOX) 和两种 Doxil ® 类似物 (Dox-NP ®、Doxoves TM ) 对 MDA-MB-231 和 MCF-7 乳腺癌细胞系的化疗反应。为了提供比较基线,使用 MCF-7 乳腺癌细胞系的自聚集方法开发了小球体模型 (~500 µ m),并进行了类似的药物治疗。对大和小 MCF-7 球体的分析表明,Dox-NP 往往具有最高水平的抑制,其次是分子阿霉素,然后是 Doxoves。讨论了使用这些类型的超大球体进行癌症研究的实验优势和缺点。
摘要。背景/目的:在筛选可选择性抑制含有突变型 (mt) KRAS 的癌症球体生长的化合物时,发现了 NPD10621,并研究了相关衍生物。材料和方法:用 12 种 NPD10621 衍生物处理表达野生型 (wt) KRAS (HKe3-wtKRAS) 和 mtKRAS (HKe3-mtKRAS) 的 HCT116 衍生 HKe3 球体的球体区域,并在三维漂浮 (3DF) 培养中进行测量。在 3DF 培养中用 NPD1018 (pyra-metho-carnil:PMC) 治疗几种癌症。在裸鼠测定中,确定了 50% 细胞生长抑制 (GI 50 ) 值。结果:在这 12 种衍生物中,PMC 是 HKe3-mtKRAS 球体生长最有效的抑制剂,毒性最小。此外,在所有测试的癌细胞系中均观察到 PMC 介导的生长抑制,与组织环境、驱动基因突变和耐药性无关,这表明 PMC 靶标对于癌症生长至关重要,且与环境无关。裸鼠试验中 PMC 的 GI 50 值为 7.7 mg/kg