本文探讨了多囊卵巢综合征(SOP),这是生殖年龄妇女的普遍状况,并以各种症状为特征。受遗传,环境和社会经济因素影响的PCO患病率的可变性强调了需要精确诊断和个性化治疗方法。进行的系统评价旨在阐明PCOS的病理生理机制,确定风险因素并讨论有效的管理方法,并通过广泛收集了PubMed和Scielo等来源数据,重点介绍了处理PCOS表现和治疗的出版物。结果指出了激素失衡,尤其是雄激素和胰岛素抵抗,例如Pho -Pathogeneseencenters。这些功能障碍会导致月经不规则,不育症和肥胖等症状,从而显着影响心理健康和生活质量。SOP妇女面临的挑战的复杂性还包括代谢和生殖合并症的高风险。讨论强调了对多学科和个性化治疗策略的需求,该策略考虑了患者的遗传和社会经济因素。管理不仅应涉及荷尔蒙干预措施,还应涉及饮食和运动等生活方式的变化,以有效地应对SOP女性的需求。关键字:多囊卵巢综合征;妇科内分泌学;激素治疗。可以得出结论,SOP需要深入了解其机制以及对治疗发展的合作方法,并通过持续的研究和基于证据的实践来改善患者的健康和生活质量。
源自干细胞的细胞外囊泡(EV)正在成为干细胞疗法的另一种方法。成功的电动汽车的冻干可以长期在室温下在室温下方便地存储和分布,从而大大提高了电动汽车治疗剂对患者的可及性。在这项研究中,我们旨在确定适当的冻约剂组成,用于冻干和重建词干细胞衍生的电动汽车。MSC衍生的EV使用不同的浓度以不同的浓度,使用不同的抒情蛋白(例如二甲基磺氧化物,甘露醇,海藻糖和蔗糖)冻干。我们的结果表明,在高浓度下,海藻糖和蔗糖的混合物可以通过富集溶液的无定形相,支持无定形冰的形成,这成功抑制了在石ply粒化过程中缓冲液成分结晶的加速度。冻干和重构的电动汽车对浓度和大小,形态以及蛋白质和RNA含量进行了彻底评估。使用带有人脐静脉内皮细胞的试管形成测定法检查了重构电动汽车的治疗作用。在冻干电动汽车的补液补液后,它们的大多数通用特征都得到了很好的维护,并且其治疗能力恢复到类似于新鲜收集的电动汽车的水平。冻干电动汽车的浓度和形态与新鲜EV组的初始特征直到第30天在室温下的初始特征相似,尽管它们的治疗能力在7天后似乎有所降低。我们的研究提出了适当的乳液保护剂组成,尤其是用于EV冻干,这可以鼓励使用干细胞衍生的EV疗法在健康行业中的应用。
随着围产期护理的持续改善,可行的早产儿的数量正在逐渐增加,以及早产相关疾病的增加,例如坏死性小肠结肠炎,支气管肺发育异常,围产期脑脑损伤,预性脑病,预性过早以及SEPIS。由于早产儿的独特病理生理学,诊断和治疗这些疾病变得尤为具有挑战性,显着影响其生存率和长期生活质量。细胞外囊泡(EV)作为细胞间交流的关键介体,在这些疾病的病理生理学中起着重要的调节作用。由于其生物学特征,电动汽车可以作为早产相关疾病的生物标志物和潜在的治疗剂。本综述总结了电动汽车的生物学特性,它们与早产相关疾病的关系及其诊断和治疗的前景。evs面临临床应用的独特挑战和机会。
概要:生命活动,例如呼吸,是通过细胞、组织和器官的持续形状调节来完成的。开发具有形状变形能力的智能材料是迈向类生命系统和可穿戴电子设备、软体机器人和仿生执行器等新兴技术的关键一步。从细胞中汲取灵感,人们组装了智能囊泡系统来模拟生物形状的调节。这将有助于理解细胞形状的适应性,并指导具有形状变形能力的智能材料的设计。由两亲性分子组装的聚合物囊泡就是一个卓越的囊泡系统的例子。其化学多功能性、物理稳定性和表面功能性使其有望应用于纳米医学、纳米反应器和仿生系统。然而,由于聚合物链的低流动性和囊泡膜的低渗透性导致能量分布不均匀,因此很难驱动聚合物囊泡脱离平衡态来诱导形状转变。过去几十年来,大量的研究开发了各种驱动形状转变的方法,包括透析、化学添加、温度变化、聚合、气体交换等。如今,聚合物囊泡可以被设计成各种非球形形状。尽管取得了令人瞩目的进展,但目前关于聚合物囊泡形状转变的研究大多仍处于反复试验阶段。预测和编程控制聚合物囊泡的形状转变是一项巨大的挑战。深入了解聚合物囊泡的变形路径将有助于从反复试验阶段过渡到计算阶段。本文介绍了聚合物囊泡形状转变的最新进展。为了进行深入分析,我们将聚合物囊泡的形状转变分为基本变形和耦合变形。首先,我们讨论聚合物囊泡的基本变形,重点关注两种变形路径:扁圆形路径和扁长圆形路径。并介绍了触发不同变形路径的策略。其次,我们探讨了两种变形途径选择性的起源以及控制这种选择性的策略。第三,我们探讨了聚合物囊泡的耦合变形,重点关注两种基本变形途径的切换和耦合。最后,我们分析了聚合物囊泡形状转变的挑战与机遇。我们设想,对变形途径的系统理解将推动聚合物囊泡形状转变从反复试验阶段进入计算阶段。这将使我们能够预测纳米颗粒在血液和间质组织等复杂环境中的变形行为,并最终获得人造应用所需的先进结构。
1 Dipartimento di Scienze del Suolo,Della Pianta E Degli Alimenti,Bari Aldo Moro大学,意大利Bari 70126,意大利Bari 2号2海洋科学与应用生物学系,艾丽卡特大学,03690年03690 Alicante,Alicante,Alicante,西班牙3号,教育和科学学院,Cordia oboba Instermity oboba Instermity oboba Instermity a 230002,000220002200022000220022002国家研究委员会(CNR),通过G. Amendola 122/D,70126意大利巴里,意大利Bari 5 5号粮食生产科学研究所,国家研究委员会(CNR),通过G. Amendola 122/o 122/O,70126 Bari,意大利6,意大利6日6生物学和环境科学和技术学院,Salenento and Salenento and Salenento and Salenento and Salenento and Instuction,731100 Lecce 7331100 Lecce 7331100 Lecce 7。 BioreSources,国家研究委员会(CNR),通过G. Amendola 165/A,70126 Bari,意大利Bari 8突尼斯科学学院,突尼斯大学El-Manar大学,突尼斯大学1002,突尼斯9号,突尼斯9哥伦比亚哥伦比亚农业研究公司C. I. Turipana-Agrosavia C. I. Turipana-Agripana-Agravia,KM。13, V í a Monter í a-Ceret é 230558, Colombia 10 Dipartimento di Bioscienze, Biotecnologie e Ambiente (DBBA), University of Bari Aldo Moro, 70126 Bari, Italy 11 Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), 00134 Roma, Italy *信件:francesca.garganese@uniba.it
当你回击发球时,说出孩子看到、做或感受到的事情,你就会在孩子大脑中建立重要的语言联系,甚至在孩子能够说话或理解你的话之前。你可以说出任何东西——一个人、一个事物、一个动作、一种感觉,或者它们的组合。如果孩子指着自己的脚,你也可以指着它们说:“是的,那是你的脚!”
多孔碳材料在许多用于存储和转换的电化学设备中具有非常重要的意义。因此,对具有改进的化学和结构特性的新碳材料的设计越来越感兴趣,从而增强其电化学性能,从而提供高能量和功率密度以及长期的循环性。为了满足这一要求,研究人员正在不断寻找满足上述验证的新型碳材料。在这方面,碳纳米球(CNSS)引起了极大的关注,因为除了碳材料的典型特征外,它们具有短的扩散途径,可提供快速动力学,这是先进的电化学能源系统的重要特征。本综述总结了用于生产非空心碳纳米球的合成策略,包括基于硬使用的方法(例如二氧化硅)或软(例如表面活性剂)模板以及无模板的程序,涉及聚合物纳米球的产生及其转化为CNSS和多孔碳纳米球(PCNSS)。此外,在储能设备(例如超级电池,电池)中使用CNSS和PCNS作为电极(例如碱,锂硫等。)或锂离子电容器以及用于能量转化的ORR电催化剂。©2021作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
摘要 - 医疗保健行业目前正在经历一场由电子健康记录(EHRS),远程医疗和可穿戴技术的进步所推动的变革性数字革命。这些创新提供了许多好处,包括增强的患者护理和加速医学研究。医疗保健的数字化彻底改变了患者护理和医学研究。ehrs可以在医疗保健提供者中无缝共享患者信息,从而更准确地诊断和有效的治疗方法。远程医疗可以增强可及性,特别是对于偏远地区的患者,而可穿戴技术可提供连续的健康监测,促进早期发现潜在的健康问题。AI正在成为解决医疗保健数字化构成的数据隐私挑战的有力工具,以及AI与区块链技术的整合构成了医疗保健数据的出现趋势。AI驱动的数据隐私措施还可以通过确保患者数据并确保遵守HIPAA和GDPR等法规,从而显着使医疗保健中的客户关系管理(CRM)系统受益匪浅。现实世界中的案例研究说明了AI的有效性,例如实施AI驱动安全系统的大型医疗保健组织。
Xin Luo 1,2,*、Kathleen M. McAndrews 1,*、Kent A. Arian 1、Sami J. Morse 1、Viktoria Boeker 1、Shreyasee V. Kumbhar 1、Yingying Hu 1、Krishnan K. Mahadevan 1、Kaira A. Church 1、Sriram Chitta 3、Nicolas T. Ryujin 1、Janine Hensel 1、Jianli Dai 1、Dara P. Dowlatshahi 1、Hikaru Sugimoto 1、