纳米技术的进展激发了对小型样品的超导性的研究,以及对它们超导状态的样品几何形状影响的研究。与散装超导体相比,包含大小的固定性会导致性质变化。众所周知,在I型体积超导体中,磁场会抑制超导性。然而,在小样品中,磁场的影响降低,阈值字段大大高于批量临界场。开发了I型超导球形包含的临界磁场计算方法。计算了针对边界条件的不同类型的临界场对纳入半径的依赖性。所提出的方法具有以任何理想的精度来确定关键场的价值的可能性。
1。Amunts K,Mohlberg H,Bludau S,Zilles K. Julich-Brain:人类大脑细胞结构的3D概率地图。Science 2020; 369:988-92。 2。 Andersson JL,Sotiropoulos SN。 一种校正方法的综合方法,以扩散MR成像中的非谐波效应和受试者运动。 Neuroimage 2016; 125:1063-78。 3。 Avants BB,Tustison NJ,Song G,Cook PA,Klein A,Gee JC。 对大脑图像注册中蚂蚁相似性表现的可重复评估。 Neuroimage 2011; 54:2033-44。 4。 Calamante F,Tournier JD,Heidemann RM,Anwander A,Jackson GD,Connelly A. 跟踪密度成像(TDI):超级分辨率属性的验证。 Neuroimage 2011; 56:1259-66。 5。 Fonov V,Evans A,McKinstry R,Almli C,CollinsD。从出生到成年期,无偏见的非线性平均适合年龄的脑模板。 Neuroimage 2009; 47:S102。 6。 Glasser MF,Smith SM,Marcus DS,Andersson JL,Auerbach EJ,Behrens TE等。 人类Connectome项目的神经影像学方法。 Nat Neurosci 2016; 19:1175-87。 7。 Gutierrez CE,Skibbe H,Nakae K,Tsukada H,Lienard J,Watakabe A等。 用神经示踪剂数据作为参考的基于扩散MRI的光纤跟踪的优化和验证。 SCI REP 2020; 10:21285。 8。 Hua K,Zhang J,Wakana S,Jiang H,Li X,Reich DS等。 立体定位空间中的道概率图:白质解剖结构和特定于区域的分析。 Neuroimage 2008; 39:336-47。Science 2020; 369:988-92。2。Andersson JL,Sotiropoulos SN。 一种校正方法的综合方法,以扩散MR成像中的非谐波效应和受试者运动。 Neuroimage 2016; 125:1063-78。 3。 Avants BB,Tustison NJ,Song G,Cook PA,Klein A,Gee JC。 对大脑图像注册中蚂蚁相似性表现的可重复评估。 Neuroimage 2011; 54:2033-44。 4。 Calamante F,Tournier JD,Heidemann RM,Anwander A,Jackson GD,Connelly A. 跟踪密度成像(TDI):超级分辨率属性的验证。 Neuroimage 2011; 56:1259-66。 5。 Fonov V,Evans A,McKinstry R,Almli C,CollinsD。从出生到成年期,无偏见的非线性平均适合年龄的脑模板。 Neuroimage 2009; 47:S102。 6。 Glasser MF,Smith SM,Marcus DS,Andersson JL,Auerbach EJ,Behrens TE等。 人类Connectome项目的神经影像学方法。 Nat Neurosci 2016; 19:1175-87。 7。 Gutierrez CE,Skibbe H,Nakae K,Tsukada H,Lienard J,Watakabe A等。 用神经示踪剂数据作为参考的基于扩散MRI的光纤跟踪的优化和验证。 SCI REP 2020; 10:21285。 8。 Hua K,Zhang J,Wakana S,Jiang H,Li X,Reich DS等。 立体定位空间中的道概率图:白质解剖结构和特定于区域的分析。 Neuroimage 2008; 39:336-47。Andersson JL,Sotiropoulos SN。一种校正方法的综合方法,以扩散MR成像中的非谐波效应和受试者运动。Neuroimage 2016; 125:1063-78。3。Avants BB,Tustison NJ,Song G,Cook PA,Klein A,Gee JC。对大脑图像注册中蚂蚁相似性表现的可重复评估。Neuroimage 2011; 54:2033-44。4。Calamante F,Tournier JD,Heidemann RM,Anwander A,Jackson GD,Connelly A.跟踪密度成像(TDI):超级分辨率属性的验证。Neuroimage 2011; 56:1259-66。5。Fonov V,Evans A,McKinstry R,Almli C,CollinsD。从出生到成年期,无偏见的非线性平均适合年龄的脑模板。Neuroimage 2009; 47:S102。6。Glasser MF,Smith SM,Marcus DS,Andersson JL,Auerbach EJ,Behrens TE等。人类Connectome项目的神经影像学方法。Nat Neurosci 2016; 19:1175-87。7。Gutierrez CE,Skibbe H,Nakae K,Tsukada H,Lienard J,Watakabe A等。用神经示踪剂数据作为参考的基于扩散MRI的光纤跟踪的优化和验证。SCI REP 2020; 10:21285。8。Hua K,Zhang J,Wakana S,Jiang H,Li X,Reich DS等。 立体定位空间中的道概率图:白质解剖结构和特定于区域的分析。 Neuroimage 2008; 39:336-47。Hua K,Zhang J,Wakana S,Jiang H,Li X,Reich DS等。道概率图:白质解剖结构和特定于区域的分析。Neuroimage 2008; 39:336-47。9。Jenkinson M,Bannister P,Brady M,SmithS。改进了对脑图像的鲁棒和准确的线性注册和运动校正的优化。Neuroimage 2002; 17:825-41。10。Jenkinson M,Beckmann CF,Behrens TE,Woolrich MW,
2个毛细血管悬浮液中的毛细管流动动力学7 2.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 2.2实验方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.3滴形成:变薄和捏合动力学。。。。。。。。。。。。。14 2.4变薄动力学:有效的粘性流体制度。。。。。。。。。。。。。16 2.5二散悬浮液的粘度。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>19 2.6早期捏。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24 2.7结论。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26 div>
聚丙烯(PP)是一种热塑性聚合物,该聚合物是由丙烯单体分子在催化剂存在下在聚合过程中的组合而产生的,通常是齐格勒 - natta,有不同的方式可以产生不同的方式来产生类似的聚丙烯,例如Spheripol,Novolen,Novolen,Innipeen,Unipool,Unipool,unipool,borstar等<以及丙烯聚合领域的最新成就。在这项研究工作中,它仅限于Spheripol生产过程,因为它是一个有效且具有成本效益的生产过程,并且可以观察到,在聚合剂之前,该反应是在以下情况下以小的预循环反应器进行的,温度为20 0 c压力:20 0 c压力:36 kg/cm 2,其容量为0.46 m 3。本文对PP及其先进功能应用的最新研究进行了全面综述。关键词:聚丙烯,生产,球形醇,聚合物,技术。
从无人机中受益匪浅的重要研究领域是精确农业,因为它们具有出色的空间分解能力,因此非常适合对蔬菜斑块进行详细的小规模分析。据我们所知,很少有研究应用无人机来探索诸如果园之类的复杂森林环境,通常依靠间接的甲基化来获取作物信息。在这项工作中,我们提出了一种新的方法,可以使特征的测量(例如分别测量水果或茎/叶)进行评估,以评估其成熟度或检测作物疾病。为了实现这一目标,我们引入了一种名为“ Sambot:球形空中ma-nipulator机器人”的新设计,该设计由一个由球形结构保护的迷你UAV组成,其前部有一个固定的操纵器。sambot与机械手的访问空间的能力相结合的球形脱落的保护益处。拟议的设计与ROS2兼容,ROS2是机器人研究和工业应用中广泛使用的框架。我们提议的范围的潜在应用范围范围超出了精确农业的范围,这些地区范围内,诸如矿山或崩溃的建筑物,结构检查以及自主地下导航等地区的搜索和救援区域。
当材料的物理尺寸与电子的波长匹配或减小时,半导体中就会发生量子限制,从而产生量化的能级和离散的电子态。这是由于电子的波粒二象性,它同时表现出粒子和波的特征。限制能是对应于半导体纳米结构(如量子点)中电荷载流子的量子限制的能量。当这些结构的尺寸接近或等于电子的德布罗意波长时,就会产生量化的能级。基于有效质量近似并假设一个理想的球形量子点,其中激子被限制在球形限制势中,Harry 和 Adekanmbi (2020) 给出了球形量子点的限制能:
1Charité的实验和临床研究中心 - 柏林大学医学和德国柏林分子医学中心; 2德国柏林德国心血管研究中心(DZHK); 3柏林Charité-University医学中心,柏林自由大学的公司成员和德国柏林的洪堡大学; 4德国柏林Helmholtz协会(MDC)的MaxDelbrück分子医学中心; 5药理学研究所,马克斯·鲁布纳(Max Rubner)心血管代谢肾脏研究中心,柏林Charité-大学医学中心,柏林自由大学的公司成员和德国柏林柏林的洪堡大学; 6德国德累斯顿的Lipotype GmbH; 7柏林Charité-University医疗中心校园Virchow诊所心脏病学系,柏林自由大学的公司成员和柏林柏林的洪堡大学; 8小儿血液学,肿瘤学和SCT,校园Virchow诊所,Charité-University医学中心柏林,柏林自由大学的公司成员和德国柏林柏林的洪堡大学; 9结构和计算生物学单元,EMBL,德国海德堡;和10个心脏病学,血管病学和重症监护医学系,校园Virchow诊所,德国德国心脏中心,柏林,德国,德国
微泡 (MB) 广泛用于超声 (US) 成像和药物输送。由于表面张力,MB 通常呈球形。当加热到玻璃化转变温度以上时,聚合物基 MB 可以机械拉伸以获得各向异性形状,从而赋予它们独特的超声介导血脑屏障 (BBB) 渗透特性。本文显示,非球形 MB 可以用 BBB 特异性靶向配体进行表面改性,从而促进与脑血管的结合和声波渗透。主动靶向的棒状 MB 是通过对球形聚(丁基氰基丙烯酸酯)MB 进行 1D 拉伸,然后用抗转铁蛋白受体 (TfR) 抗体对其外壳进行功能化而生成的。使用超声和光学成像证明,无论是在体外还是体内,非球形抗 TfR-MB 都能比球形抗 TfR-MB 更有效地与 BBB 内皮结合。与 BBB 靶向球形 MB 相比,与 BBB 相关的各向异性 MB 产生更强的空化信号,并显著增强 BBB 渗透和模型药物的输送。这些发现证明了抗体修饰的非球形 MB 具有向大脑靶向和触发药物输送的潜力。
摘要。目的:扩散加权磁共振成像(DW-MRI)是一种关键成像方法,用于以毫米尺度捕获和建模组织微体系结构。对测量的DW-MRI信号进行建模的常见做法是通过光纤分布函数(FODF)。此功能是下游拖拉学和连通性分析的重要第一步。具有数据共享的最新优势,大规模多站点DW-MRI数据集可用于多站点研究。但是,在获得DW-MRI期间,测量变化(例如,间和内部变异性,硬件性能和序列设计)是不可避免的。大多数基于模型的方法[例如,受约束的球形反卷积(CSD)]和基于学习的方法(例如,深度学习)并未明确考虑FODF建模中的这种变异性,从而导致在多现场和/或纵向扩散研究上的性能下降。