31010半空腔室0.125 cm 3提供了合理空间分辨率的小尺寸之间的良好级别,并具有较大的敏感体积,以进行准确的剂量测量。0.125 cm 3的腔室体积提供了足够的信号,用于高精度参考剂量测量。敏感体积几乎是球形的,导致沿水幻影的所有三个轴沿所有三个轴的均匀的角度响应和均匀的空间分辨率。
为了维持遵循爱因斯坦模型的空间各向异性,我们认为宇宙位于四维(4-D)空间中存在的3型球面的表面上。就像在3-D空间中一样,足球的表面(2球)是二维和各向同性的,在4-D空间中,3-Sphere的表面是三维和各向同性的。即使我们的宇宙关闭,我们的空间曲率也无法被我们检测到,因为我们的空间在引力下自由扩展(就像观察者自由落入引力场一样无法检测到时空的曲率)。由于我们宇宙的空间是封闭的,球形的圆周必须是零点波的波长的整数倍数,从而导致零点场的量化。因此,计算零点场的所有可能模式,我们计算了真空能(或暗能)BE,这与观测数据一致。因此,我们解决了宇宙学的恒定问题,其中标准真空能量的预测
摘要。两个椭球集的闵可夫斯基和与差一般不是椭球形的。然而,在许多应用中,需要计算在某种意义上近似闵可夫斯基运算的椭球集。在本研究中,考虑了一种基于所谓椭球微积分的方法,该方法提供了参数化的外部和内部椭球族,可以紧密近似于闵可夫斯基椭球的和与差。近似沿方向 l 是紧密的,因为椭球在 l 上的支撑函数等于和与差在 l 上的支撑函数。然后可以根据相应椭球的体积或迹的最小(或最大)测量值来选择基于外部(或内部)支撑函数的近似。建立了利用欧几里得几何或黎曼几何对两个正定矩阵的闵可夫斯基和与差的基于体积的近似及其均值之间的联系,这也与它们的 Bures-Wasserstein 均值有关。
Qualitative composition of excipients and other constituents Lyophilisate : Sorbitol Hydrolysed gelatine Pancreatic digest of casein Disodium phosphate dihydrate Solvent: Patent Blue V (E131) Potassium dihydrogen phosphate Disodium phosphate dihydrate Disodium edetate dihydrate Sodium chloride Sodium hydroxide or盐酸(用于pH调节)进行注射冻干的水:偏白,主要是球形的。溶剂(溶剂oculo/nasal):蓝色溶液。3。临床信息3.1目标物种鸡。3.2用于使用鸡的主动免疫的每个目标物种使用的适应症,以减少由传染性支气管炎病毒(IBV)的QX样变体引起的鸟类感染性支气管炎的呼吸迹象。免疫发作:3周。免疫持续时间:8周。3.3禁忌症无。
摘要:高级孔隙形态 (APM) 泡沫元件几乎是球形的泡沫元件,具有坚固的外壳和多孔的内部结构,主要用于压缩载荷应用。为了确定内部结构的变形及其在压缩过程中的变化与其机械响应之间的关系,进行了原位时间分辨 X 射线计算机微断层扫描实验,其中在加载过程中对 APM 泡沫元件进行 3D 扫描。当机械响应与样品的内部变形相关时,同时施加机械载荷和射线成像使人们对 APM 泡沫样品的变形行为有了新的认识。研究发现,在出现第一个剪切带之前,APM 元件的刚度达到最高。在此之后,APM 元件的刚度降低,直到内部孔壁之间第一次自接触为止,从而使样品刚度朝向致密化区域增加。
苏联航天器设计的发展。苏联的方法也依赖于简单性,因为谢尔盖·科罗廖夫更喜欢球形,因为它具有固有的稳定性,并且在东方号的设计中也具有简单性,而水星的则是截锥形。虽然两种形状都很钝,但苏联人用隔热材料包裹了球形的东方号。这增加了相当大的重量,但考虑到苏联火箭的升力能力,这并不算什么问题。有关当时美国和苏联方法的更多比较,请参阅 Ezell、Edward Clinton 和 Linda Neuman Ezell 的《伙伴关系:阿波罗-联盟测试项目的历史》(华盛顿特区:NASA SP-4209,1978 年),第 66-73 页。有关苏联计划本身的更深入报道,请参阅 Asif A. Siddiqi 的《向阿波罗发起挑战:苏联与太空竞赛,1945–1974》(华盛顿特区:NASA SP 2000-4408,2000 年)。
抽象球样二氧化葡萄纳米颗粒是通过热液法合成的。使用各种技术研究了所得的样品,包括X射线粉末衍射光谱(XRD),高分辨率扫描电子显微镜(HRSEM),能量分散X射线光谱(EDX),电子显微镜(TEM)和Ultraviolet可见吸收光谱(UVIS)。通过X射线衍射分析确定,立方荧光岩的晶体结构及其平均粒径范围在10-20 nm之间。使用高分辨率扫描电子显微镜测定二氧化岩纳米颗粒的直径。透射电子显微镜显示,二氧化岩纳米颗粒是球形的,直径约为15.3 nm。能量分散性X射线光谱显示出高度纯的二氧化岩纳米结构。通过紫外可见的吸收光谱估计二氧化岩岩的带隙能量为3.34 eV。此外,通过价带孔的作用,实现了刚果红色染料的最大光催化活性和最大光降解效率。
摘要。在这项研究中,使用直接的微波辅助技术合成氧化锌纳米颗粒。结果表明,合成的纳米颗粒是六边形的wurtzite Zno纳米颗粒,其结晶石尺寸为6.76 nm,如通过生理化学方法确定。它揭示了在不同的增强型,是不规则的,球形的海绵状结构。使用傅立叶变换红外光谱法,已经观察到ZnO表面上的相应官能团。根据吸收测量值,直接光带隙约为3.29 eV。光致发光光谱可通过寻找红色发射和蓝色带缘发射来检测ZnO晶格中的晶体缺陷。进行了对氧化锌纳米颗粒的抗腐蚀能力的研究,该研究表明,当用镁(MG)底物涂有颗粒时,颗粒具有有益的特征。这些材料被评估,具有有或没有保护性涂层的腐蚀性。结果表明,在不同的电解质条件下,涂层显着提高了保护速率。与裸露的MG板相比,当ZnO纳米颗粒涂覆时,电荷转移电阻R CT增加。