摘要:对Viburni的潜在分配范围和管理策略知之甚少。基于历史分布数据和环境因素,本研究预测了使用Maxent(最大熵)在不同气候变化情景下传播的潜在适合viburni的区域。结果表明,最冷的季度(BIO19),降水季节性(BIO15)和最湿季度的平均温度(Bio8)的降水是确定viburni分布的最重要的环境因素。在当前的气候条件下,其潜在的适当地区是中国南部,整个日本,北美(尤其是美国东部),南美西南部,地中海沿岸和欧洲大部分地区,非洲中部,即撒哈拉沙漠沙漠南部,以及澳大利亚南部海岸。预计适合这种害虫的栖息地的总面积将来会增加。为了防止P. viburni的传播和传播,需要加强对南部港口的害虫的监测和隔离措施。
减数分裂通常是一个公平的过程:每个染色体都有50%的机会被包括在每个配子中。但是,与某些染色体相比,某些染色体比其他染色体更有可能变得异常。但是,为什么以及如何发展这种系统尚不清楚。在这里,我们研究了斑点的异常生殖遗传学,在男配子中,在男配子中仅包括母体染色体,而消除了父亲染色体。一种物种 - 伪球菌viburni - 一种隔离的B染色体,它通过消除父亲基因组消除而驱动。我们介绍带有和没有B染色体线的线的整个基因组和基因表达数据。我们确定了B连锁序列,包括204个蛋白质编码基因和卫星重复,占染色体的很大比例。B和核心基因组之间的几个PARA日志分布在整个基因组中,反对一个常染色体的简单或近期的染色体重复,以创建B。我们确实找到了一个373 Kb区域,其中包含146个基因,这似乎是最近的易位。最后,我们表明,尽管在减数分裂过程中表达了许多B连锁基因,但其中大多数是在最近易位的区域编码的。在减数分裂过程中,只有少数B-专有基因表达。在男性减数分裂过程中只有一个过表达,这是在驱动器发生的时候:乙酰基转移酶在H3K56AC中的乙酰基转移酶,在减数分裂中具有推定的作用,因此是进一步研究的有前途的候选人。
研究小组假设,Na+转运VoV1-ATPase可能是VRE存活的重要酶。这种酶起到钠泵的作用,在肠道的碱性环境中将Na+输出出细胞,从而维持体内平衡并使细菌生长(图1a)。这种蛋白质存在于多种能在碱性环境下生长的致病菌中,但在动物、植物以及乳酸杆菌、双歧杆菌等有益菌中却不存在,因此抑制该蛋白质的化合物有望成为新型抗菌药物。 因此,我们假设,如果我们能够找到一种化合物来抑制这种 Na + 转运 V o V 1 -ATPase 的功能,我们也许能够抑制 VRE 的增殖,并且我们从广泛的化合物库中寻找抑制剂。
2生物学系,约翰·霍普金斯大学(Johns Hopkins University),3400 N. Charles St.,235 Mudd Hall,Baltimore,MD 21218 6美国马里兰州巴尔的摩市7 8 *应向其通信。 peter.sarin@helsinki.fi, +358-2941-59533 92生物学系,约翰·霍普金斯大学(Johns Hopkins University),3400 N. Charles St.,235 Mudd Hall,Baltimore,MD 21218 6美国马里兰州巴尔的摩市7 8 *应向其通信。peter.sarin@helsinki.fi, +358-2941-59533 9
粪肠球菌129 BIO 3B是一种乳酸细菌,已安全用作益生菌产品已有100多年了。最近,由于某些粪肠球菌属于万古霉素的肠球菌。致病潜力较少的粪肠球菌组已被分为一个单独的物种(乳糖肠球菌)。在这项研究中,我研究了粪肠球菌129 Bio 3b以及粪肠球菌129 BIO 3B-R的系统发育分类和安全性,该含有天然对氨苄西林具有抗性。使用特定基因区域的质谱和基本局部比对搜索工具分析无法将3B和3B-R区分为E.粪肠球大肠杆菌或乳酸菌。然而,成功识别3B和3B-R的多焦点序列与乳酸螺旋体相同。总体基因组相关性指数表明,3B和3B-R与乳酸乳乳酵母具有很高的同源性。用E.乳酸性乳核e物种特异性引物证实了3B和3B-R的基因扩增。氨苄青霉素的最低抑制浓度被证实为3B为2 µg/ml,这是欧洲食品安全局设定的粪肠球大肠杆菌的安全标准。基于上述结果,将粪肠球菌129 Bio 3b和E.粪肠球菌129 BIO 3B-R分类为乳酸菌。除了FMS21之外,没有致病基因的缺乏表明这些细菌可安全用作益生菌。
肠球菌可产生具有抗菌活性的细菌素,但尚未对肠球菌菌株中的细菌素分布进行全面的分析。本研究对80株粪肠球菌和38株屎肠球菌进行了细菌素基因鉴定,并研究了它们的抗菌活性。80株粪肠球菌中鉴定出细胞溶素基因(61.3%)、肠溶素A基因(27.5%)和BacL 1基因(45.0%)。38株屎肠球菌中鉴定出肠素A基因(97.4%)、肠素B基因(2.6%)、肠素NKR-5-3B基因(21.0%)、细菌素T8基因(36.8%)和BacAS9基因(23.7%)。对所有菌株进行了针对粪肠球菌和屎肠球菌的抗菌活性测试。溶细胞素、肠溶素 A、BacL 1 、细菌素 T8 或 BacAS9 基因阳性的菌株表现出不同的抗菌活性。几种细菌素阳性菌株对其他肠球菌种表现出抗菌活性,但对葡萄球菌或大肠杆菌没有抗菌活性。此外,肠溶素 A 阳性菌株对耐万古霉素的屎肠球菌表现出抗菌活性,而细菌素 T8 或 BacAS9 阳性菌株对耐万古霉素的粪肠球菌和屎肠球菌表现出活性。我们的研究结果表明携带不同细菌素基因的屎肠球菌和屎肠球菌菌株可能会影响周围细菌群落的组成。
葡萄球菌物种是革兰氏阳性,非运动,非孢子球,大小不同,成对和不规则的簇中发生。殖民地不透明,可能是白色或奶油,偶尔是黄色或橙色。最佳生长温度为30°C-37°C。它们具有发酵的代谢,是兼性厌氧菌,除糖链球葡萄干和苏氏链球菌subsp.anaerobius外,它们最初在厌氧上生长,但可能会在亚培养物2上变得更加耐氧化。葡萄球菌种类通常是过氧化氢酶阳性的,氧化酶也为阴性,除S. sciuri组(S. sciuri,S。lentus和S. vitulinus)外,Fleuretti S. fleuretti和Macrococcus组已分配了3,4。这也是链球菌属的区别因子,链球菌是过氧化氢酶阴性的,并且与葡萄球菌具有不同的细胞壁组成。某些物种易于溶解蛋白裂解,但不能溶菌酶溶解,并且能够在6.5%的氯化钠中生长。一些物种产生细胞外毒素。葡萄球菌可能是
肠道微生物组的变化在同种异体造血细胞移植(Allo-HCT)1-6后,在急性移植疾病与宿主病(AGVHD)的发病机理中具有关键作用。但是,尚未确定安全解决肠道营养不良的有效方法。肠道肠球菌在肠道中的扩张与营养不良有关,已被证明是AGVHD 7-10的危险因素。在这里,我们分析了Allo-HCT患者的肠道微生物组,并发现粪肠球菌通过形成生物膜而不是通过获得药物耐药基因来逃避消除并在肠中增殖。我们从粪便样品中分离了细胞溶素阳性高度致病性的粪肠球菌,并通过分析细菌性全基因组测序数据来鉴定出源自粪肠球菌特异性噬菌体的抗粪肠球菌酶。在体外和体内,抗菌酶对粪肠球菌的生物膜具有裂解活性。此外,在AGVHD诱导的gnotobirotic小鼠中,与粪肠球菌或患者粪便样品定殖的特征是以肠球菌占主导地位的特征,肠道胞糖蛋白阳性大肠杆菌的水平降低并在组中与E. faecal Sencals相比大大降低,并将其与Faecal Senters进行了显着增强。因此,施用噬菌体衍生的抗菌酶,该酶是针对生物膜形成的致病性大肠杆菌(使用现有抗生素很难消除的)可能提供了一种防止AGVHD的方法。
摘要:(1)背景:抗生素耐药细菌的兴起对全球公共卫生构成了重大威胁,需要创新的解决方案。本研究探讨了在肠球菌不同物种之间抗生素抗性的背景下,群集定期间隔短的短滴体重复序列(CRISPR)的作用。(2)方法:使用CRISPRCASFINDER分析了研究中包含的肠球菌的基因组,以区分CRISPR阳性(4级CRISPR)和CRISPR阴性基因组。抗生素耐药性基因,比较分析探索了肠球菌中CRISPR存在与抗生素抗性谱之间的潜在关联。(3)结果:在肠球菌物种中发现的十个抗生素耐药基因中,只有一个EFMA基因与CRISPR-sem-semant株有着密切的关联,而其他菌株在CRISPR阳性和CRISPR阳性和CRISPR阴性肠球菌基因组之间并没有显着差异。(4)结论:这些发现表明,在CRISPR阴性肠球菌基因组中,EFMA基因可能更为普遍,并且它们可能有助于更好地理解肠道抗生素耐药性基因的分子机制。