背景:糖尿病性视网膜病(DR)是威胁性糖尿病的微血管并发症。慢性炎症和内皮功能障碍是疾病发病机理中的关键因素。因此,为减少视网膜炎症而开发的干预措施预计将对DR的预防和治疗有益。在本研究中,我们开发了一类具有有效抗炎活性的无药肽的纳米杂化剂,并研究了其在氧气诱导的视网膜病变(OIR)小鼠模型和链蛋白酶(STZ)诱导的糖尿病小鼠模型中治疗DR的治疗功效。方法:六肽被用于修饰金纳米颗粒以形成基于药物的基于药物的纳米杂交(P12)。然后,我们检查了p12在HUVEC和BV2细胞中的理化特性和抗炎活性,并确定了这种新型生物活性的关键氨基酸。应用玻璃体内和恢复轨道注射以确定P12的最佳视网膜输送途径。使用OIR模型和STZ诱导的糖尿病模型研究了p12治疗DR的治疗功效。通过免疫组织化学和流式细胞仪分析,我们确定了在视网膜中内化p12的主要细胞。 此外,还使用体外实验来探索p12抗炎活性的基本分子机制。 结果:我们发现P12在HUVEC和BV2细胞中均表现出有效的抗炎作用。 此外,可以通过玻璃体内注射有效地将p12有效地输送到视网膜。通过免疫组织化学和流式细胞仪分析,我们确定了在视网膜中内化p12的主要细胞。此外,还使用体外实验来探索p12抗炎活性的基本分子机制。结果:我们发现P12在HUVEC和BV2细胞中均表现出有效的抗炎作用。此外,可以通过玻璃体内注射有效地将p12有效地输送到视网膜。玻璃体内注射的p12显着改善了早期DR症状,包括STZ诱导的糖尿病小鼠的血管泄漏和周细胞损失。它还抑制了OIR小鼠的病理新生血管形成和视网膜出血。重要的是,我们发现玻璃体内注射的p12主要由小胶质细胞和内皮细胞吸收,从而导致视网膜内皮炎症和DR动物模型中的小胶质细胞激活减少。机理研究表明,p12在内皮细胞和小胶质细胞中都有效抑制了几种TLR4下游信号通路,例如NF-κB,JNK和P38 MAPK。这种效应是由于p12在阻止内体TLR信号转导的内体酸化过程中的能力。结论:我们的发现表明,局部注射经过适当设计的,无药,基于肽的纳米杂交可以作为治疗DR的安全有效的抗炎纳米医学。
gentry 1,2, *,李陈3, *和拉蒙·C·太阳1,2, * 1 1佛罗里达州佛罗里达州盖恩斯维尔大学医学院生物化学与分子生物学系,美国佛罗里达州盖恩斯维尔大学2佛罗里达大学神经科学系,美国佛罗里达州盖恩斯维尔大学5成瘾研究与教育中心,佛罗里达大学,佛罗里达州盖恩斯维尔,佛罗里达州盖恩斯维尔6麦克奈特脑研究所,佛罗里达大学,佛罗里达州盖恩斯维尔大学,佛罗里达州7 7美国佛罗里达州盖恩斯维尔市9佛罗里达大学化学系,美国佛罗里达州盖恩斯维尔大学10年老化学院,佛罗里达大学,佛罗里达州盖恩斯维尔,美国#这些作者同等贡献:Harrison A. Clarke; Xin MA; Cameron J. Shedlock *这些作者共同监督这项工作:Matthew S. Gentry;李陈拉蒙·C·太阳摘要:代谢产物,脂质和聚糖是参与复杂生物系统的基本生物分子。它们通过定义生物体的生理学和病理学的无数途径和分子过程进行代谢引导。在这里,我们提出了一种蓝图,用于使用质谱成像从单个组织中对空间代谢组,脂肪组和糖的同时分析。个人赞美原始的实验协议,我们的工作流程包括一个称为空间增强多组学界面(SAMI)的计算框架,该框架提供了多组学的整合,高尺寸聚类,空间解剖学映射,具有匹配的多组学特征,以及为无效的互联网分配和互动的互动式分配,并提供匹配的多组学特征,并提供互动生物学。INTRODUCTION Metabolomics (Fiehn, 2002; Gibney et al., 2005; Lisec et al., 2006), lipidomics (Cajka and Fiehn, 2016; Han and Gross, 2005), and glycomics (Cummings and Pierce, 2014; Ruhaak et al., 2010; Wada et al., 2007) are three distinct facets of omics methodologies, each offering a unique window进入活生物体中相连且复杂的生化过程。这些领域的当前状态缺乏空间分辨率和统一的综合分析,这些分析提供了互连代谢景观的广泛概述。发展空间分辨的代谢组学,脂质组学和糖基因对于促进我们对生物系统的了解至关重要,并且有可能改变我们对复杂组织代谢异质性的理解,发现新型的生物标志物甚至治疗靶标。然而,这种综合方法的发展受到每个分子类别的理化特性和分析要求的固有差异的挑战。基质辅助激光解吸/电离(MALDI)质谱成像作为空间分辨分子分析的强大工具出现,提供了克服与合并样品分析相关的主要限制的可能性(Caprioli等,1997; McDonnell and Heeren,2007年)。
甜菜根是一种营养来源,其中包含大量的贝塔利亚和类胡萝卜素以及生物活性化学物质。甜菜根约为2-3%的纤维,8%的碳水化合物和87%的水。将果胶,酸和糖等关键成分掺入了强化的甜菜根和橙色果冻中。因为它含有活性化学物质,维生素和矿物质,因此在60:40的比例为60:40的甜菜根果冻的本研究已与Beetroot作为基础成功完成,以增加价值。选择橙色是因为它具有较大的果胶含量,并且是钾,钙,维生素C和维生素A的良好来源。它增加了运动能力,降低了血压并增强了心脏。它具有386 kcal的能量,79%的碳水化合物,37%的浮子和6.5 mg的维生素A和C-14。当前研究的目的是在成品中产生Orbeet Jelly及其感觉属性。使用61%的糖,0.5%的柠檬酸和2%果胶,成功产生了果冻。果冻是使用橙色和甜菜根的益处有效地创建的,并且具有不错的营养价值。所有年龄段的人都可以从中受益以保持免疫力。有水果,这是健康生活方式的基本必需品,因为它们为人体提供必要的营养并预防疾病。知道水果的重要性,这是我们研究创建健康混合水果果酱的动机,特别是通过使用猕猴桃和黄瓜的美味组合。由于黄瓜和猕猴桃被证明具有出色的营养含量,我们想到了使用它们。鉴于这些事实,我们现在正在考虑含有饮食纤维,维生素C和维生素K的猕猴桃的使用,以及在维生素A,C和K中丰富的黄瓜,并且本质上是水分的。这两种水果增加了这种果酱的营养含量,除了使其具有凉爽的味道。我们在实验中测试的猕猴桃和黄瓜的比率是:100%猕猴桃对照,50%猕猴桃和50%黄瓜,70%猕猴桃和30%黄瓜,以及30%猕猴桃和70%黄瓜。我们掺入了柠檬酸,苯甲酸钠和工业果胶,以改善果酱的质地和防腐剂。基于一项详细的研究,我们发现使用50%猕猴桃比(T1)制备的果酱具有独特的理化特性。它的总糖的分数较低,但是可滴定的酸度,总可溶性固体,水分,pH和抗坏血酸水平较高。由于这些特性,它具有平衡的营养概况,因此对于寻求健康的人来说是一个绝佳的选择。我们通过对风味,香气,质地和普遍的可接受性进行感觉评估来确保果酱的感觉吸引力。在所有感官类别中,T1 JAM得分最高,这反映出它在测试的人中是最可接受的。其鲜艳的绿色颜色分别带有L*,A*和B*值为32.41,-2.29和9.51的值,加起来将使消费者沉迷于其乐趣。最后,我们的研究表明了基于猕猴桃的果酱的营养卓越和感官喜悦,尤其是变体T1。在现代时代,通过科学方法制作果酱,果冻,水果棒和其他水果产品,它为人们带来了新的收入来源。这些水果产品不仅呈现高营养含量,而且还提供了建立小型企业的盈利能力。这项研究的目的是生产不同的水果产品以及涉及保存和加工它们的技术,重点关注Soneratia apetala水果制备的果冻,该水果在印度的Sundarbans中广泛使用。这种果冻的原始材料S. apetala果肉在季风季节很容易获得,并且富含维生素C. Sundarbans的三角洲综合体可能支持具有适当存储和营销连接的小型红树林企业。