b'magic-角角扭曲的双层石墨烯可容纳各种有趣的物质状态,包括非常规的超导状态。但是,这种材料可以形成全新的物质状态吗?在本次演讲中,我将讨论两种不同类型的电子冷凝物的可能出现,它们超出了BCS耦合范式。这些是由典型的四元素形成的冷凝物,在电子对之间没有相干性,而是对成对对之间的相干性。通过使用大型蒙特卡洛模拟在魔术角扭曲的低能有效模型[1]中,我们表明,取决于超导地面状态,费米式四倍体置置供应量可以作为遗传相吻合。由四个破坏时间逆转对称性的电子形成,通常出现在超导过渡上方[2]。相反,如果基态是列明超导体,则我们的数值模拟表明,该系统在正常金属相中熔化之前表现出电荷4E相[3]。这表明扭曲的双层石墨烯是稳定和观察这些新型量子状态的理想平台。
摘要 随着人工智能 (AI) 和机器学习 (ML) 算法的不断进步,许多高计算应用程序现在都部署在边缘设备上。因此,需要一种高效的硬件,既能高效执行复杂算法,又能适应这项技术的快速改进。Xilinx® Kria™ K26 SOM 旨在满足在边缘设备上高效执行 ML 应用程序的需求。在本白皮书中,研究了各种 ML 模型和实时应用程序的性能,并将其与 Nvidia Jetson Nano 和 Nvidia Jetson TX2 进行了比较。Xilinx 的结果显示,K26 SOM 的性能优势大约是 Nvidia Jetson Nano 的 3 倍。与 Nvidia Jetson TX2 相比,它的性能/瓦特优势也超过 2 倍。K26 SOM 的低延迟和高性能深度学习处理单元 (DPU) 比 Nano 提供了 4 倍或更大的优势,并且具有 SSD MobileNet-v1 等网络,使 Kria SOM 成为开发 ML 边缘应用程序的理想选择。