健康与福祉委员会是郡议会的一个正式委员会,我很自豪能担任该委员会的主席。我和委员会成员合作了解林肯郡社区的需求,商定优先事项,并鼓励负责制定当地健康和护理服务决策的人以更紧密的方式开展工作。自 2018 年 6 月首次发布林肯郡第二份联合健康与福祉战略以来,形势发生了重大变化。首先,应对 Covid-19 的挑战,这是一代人以来最大的国际公共卫生紧急事件。随后是备受期待但同样重要的综合护理系统的引入,这需要 NHS、地方当局和其他社区和志愿部门合作伙伴以前所未有的方式进行合作。《2022 年健康与护理法》从 2022 年 7 月起引入了新的法定安排。为了确保该战略仍然具有相关性,有必要反映这些变化。然而,值得注意的是,该战略的内容仍然很重要,尤其是因为它为所有负责并关注该县居民和工作人员的健康和福祉的组织提供了明确的方向。同样值得注意的是,我们没有为该战略设定时间表。这是 2018 年的一项有意识的决定,因为它使我们能够专注于长期的理想目标和目标以及短期行动。它还使董事会能够迅速应对林肯郡居民和工作人员面临的不断变化的健康和福祉需求和优先事项,并尽可能使该战略保持最新状态。在制定该战略时进行了广泛的协商,以确保我们真正听取了全县人民的意见,而不仅仅是那些从事健康和护理工作的人的意见。这次协商完全基于董事会联合战略需求评估中包含的证据,该评估可在林肯郡研究观察站网站上查阅。我们的 JSNA 将于 2023 年 3 月重新发布,并将根据需要修改此战略,以反映在此过程中出现的任何新的或新兴的优先事项。林肯郡健康与福祉委员会将卫生和护理系统的关键人物聚集在一起,共同努力减少不平等现象并改善林肯郡人民的健康和福祉。我们旅程的下一步是抓住 ICS 带来的机遇,并与系统合作伙伴一起应对我们面临的挑战,以获得最大的利益,在需要的地方联合起来并推动变革,从而真正改变我们县人民的健康和福祉。我鼓励您以任何可能的方式使用这一策略,以进一步改善林肯郡人民和社区的健康和福祉。
ABB 与太阳能供应商 Solar Philippines 合作开展 63.3 兆瓦太阳能发电厂项目,将为 40 多万人提供可持续能源。卡拉塔甘太阳能发电场位于八打雁,是菲律宾最大、人口最多的岛屿吕宋岛上最大的太阳能设施之一,拥有 200,928 块太阳能电池板,为八打雁西部六个市镇的 413,000 多人 1 提供电力。该项目在菲律宾政府上网电价 (FIT) 计划的帮助下得以实现,充分利用了菲律宾充足的阳光。预计该国每天每平方米的太阳能发电潜力为 4.5-5.5 千瓦时,是建设卡拉塔甘太阳能发电场等太阳能发电设施的理想之地。 ABB 包装和解决方案全球产品组经理 Calogero Saeli 解释道:“利用太阳能只会给菲律宾带来好处,有助于提高能源效率并减少对环境的潜在影响。我们认为,太阳能发电的范围大于政府 2030 年国家可再生能源计划中提出的 1,528 兆瓦的理想目标。太阳能是一种显而易见的能源,也是一种相对容易实施和融入电网的可再生能源。太阳能成本持续下降,这对当地社区来说是个好消息,增加可再生能源的使用将创造急需的就业机会。”为了确保持续供电,ABB 为太阳能发电场提供了核心的电厂平衡 (eBOP) 设备,从太阳能电池板到电网连接。这种低压和中压技术组合包括 23 个 2,400kVA 和 13.8 kV 撬装模块,以及两组 69 kV 变电站设备,30 MVA 69 kV/13.8 kV 电力变压器,一个模块化 e-House,其中包含 14 个 UniGear ZS1 开关设备框架和 Relion® 保护继电器以及一套保护和控制面板。以及一套保护和控制面板。为 Solar Philippines 提供的预先设计、预先设计的集成“即插即用”解决方案通过使用标准化构件减少了现场安装时间。这些都是可扩展和模块化的,可最大限度地减少现场工作并提供更快的投资回报。“菲律宾太阳能 FIT 计划的第二轮分配是 500 MW,是一场冲刺。ABB 能够在目标期限内交付,使其成为政府 FIT 计划的候选者。有资格享受太阳能上网电价优惠价格
o Metsä Group 正在研究从我们的一家生物制品厂捕获生物 CO 2 的可行性。主要产品是纸浆,生物 CO 2 副产品是一个真正的机会。在许多产品中,源自生物 CO 2 的碳可以替代化石基碳。 • 制定行动计划,推广木质建筑。 5. 在产品监管中将可持续生物基原料视为循环投入 • 可再生材料在发展更循环的经济发展中发挥着特殊作用。由于总是会发生损失和降解,因此没有任何材料可以永远重复使用或回收:总是需要新的原始材料。可以根据循环经济的原则,以再生方式将原始可再生原料(例如木材)供应给循环系统。 • 可持续采购的可再生材料应被视为循环投入,就像回收材料一样,例如公共采购、CMUR(循环材料使用指标)、产品生态设计要求、分类法、包装法。可再生内容已经得到世界可持续发展工商理事会及其循环转型指标 6 的认可。 6. 在欧盟生物技术和生物制造倡议下,促进整个生物基材料行业及其创新 • 我们欢迎这一倡议,并想强调,要真正释放欧盟生物经济的潜力,促进整个生物基材料行业及其创新是关键。 • 生物制造需要理解为使用任何技术制造生物基产品。生物技术是生物制造的重要手段之一,但不是唯一手段。 • Metsä Group 的创新公司投资并支持潜在的可持续创新和技术,为北欧木材找到新的用途和更高的价值,以取代日常产品中的化石基材料和化学品。迄今为止,我们已经进行了六项外部初创企业投资,并启动了两个基于造纸级纸浆的内部开发项目:Kuura® 纺织纤维和 Muoto™ 3D 模制纤维产品。 • 促进对首批示范和商业生产工厂的投资对于加速欧洲生物基创新的商业化至关重要。 Metsä Group 的母公司是一家由 90,000 多名森林所有者拥有的合作社。我们使用木材为全球数百万人的日常生活制造可回收产品。我们专注于木材供应和森林服务、木制品、纸浆、纸板、纸巾和防油纸。我们致力于再生林业的原则,以显著加强森林的自然状态。 2023 年,我们的销售额总计 61 亿欧元,拥有约 9,500 名员工。 联系我们:Tytti Peltonen,欧盟企业事务副总裁 手机:+32(0)475 240190 tytti.peltonen@metsagroup.com。 参考文献: 1 根据 RED III 生物质可持续性标准 2 Nova Institute。2023 年。欧盟 27 国材料和化学行业的有机碳流动。 3 https://www.handprint.fi/links/ 4 https://www.metsagroup.com/news-and-publications/news/2023/metsa-group-is-looking-into-the-construction- of-a-carbon-capture-facility/ 5 符合欧盟委员会在可持续碳循环通报中设定的 20% 理想目标 6 https://www.wbcsd.org/Programs/Circular-Economy/Metrics-Measurement/Resources/Circular-Transition-Indi- cators-v4.0-Metrics-for-business-by-business
抗生素耐药细菌的兴起是全球健康问题,由于这些抗性感染,到2050年,每年预计每年将超过100万人死亡。世界卫生组织(WHO)已经确定了十二种关键的抗生素病原体,包括抗性霉素肠球菌(VRE),例如肠球菌(E.粪便)。vre引起严重的医院可获得的感染,例如心内膜炎和败血症,并对多种抗生素产生了抗药性,强调了对新的抗菌治疗的迫切需求。应对这一危机,由日本千叶大学科学研究生院的Takeshi Murata教授领导的研究人员团队发现了一种有希望的新化合物V-161,有效地抑制了VRE的增长。他们的研究检查了在这些细菌中发现的一种称为Na +传输V-ATPase的钠泵化酶,该酶在E. hirae中发现,E. hirae是粪肠球大肠杆菌的亲戚,用作研究酶的更安全,更可拖动的模型。该团队由Chiba University科学研究生院的第一作者Kano Suzuki助理教授组成;奇巴大学医学真菌学研究中心的Yoshiyuki Goto副教授;高能加速器研究组织结构生物学研究中心的Toshiya Senda教授和Toshio Moriya副教授;国立自然科学研究所的分子科学研究所的Ryota Iino教授。Murata博士解释说:“这种酶有助于将钠离子从细胞中泵出,有助于VRE的生存,尤其是在像人类肠道这样的碱性环境中。这项研究于2024年11月21日在自然结构和分子生物学上发表,假设Na +传输V- ATPase在开发抗生素的发展中可以发挥关键作用,该抗生素专门针对VRE而不影响有益细菌。这种酶在像乳杆菌等有益细菌中不存在,尽管人类具有相似的酶,但它具有不同的功能。这使得VRE中的Na +传输V -ATPase成为选择性抗菌治疗的理想目标。”他进一步指出:“我们筛选了70,000多种化合物,以鉴定酶Na + -V -ATPase的潜在抑制剂。在其中,V-161是一个有力的候选人,在碱性条件下降低VRE生长方面表现出显着的有效性,这对于这种抗性病原体的生存至关重要。”此后,进一步的研究表明,V-161不仅抑制了酶功能,而且还降低了小鼠小肠中的VRE定植,突出了其治疗潜力。这项研究的主要发现是对酶的膜V 0结构域的高分辨率结构分析,揭示了对V-161如何与之结合并破坏酶功能的详细见解。v-161靶向酶的C形环与A-subunit之间的界面,有效地阻断了钠转运。这种结构信息对于理解化合物的起作用至关重要,并为开发针对该酶的药物提供了基础。Murata博士解释说:“从结构分析获得的发现可用于开发其他难治性细菌的治疗方法,也为制定未来药物开发的重要准则构成了基础。”他进一步补充说:“我们希望不仅为VRE进行创新治疗的发展,而且多种耐药细菌将大大推动对耐药性感染的治疗。”