Le 还展示了该方法如何应用于各种应用,包括具有单个和多个磁场的量子计量学以及应用于复杂多体系统的哈密顿断层扫描。他还将新方法与精确的理论方法和另一种近似模型 Suzuki-Trotter 进行了细致的比较。尽管该方法与理论方法非常接近,但 Suzuki-Trotter 近似值偏离了真实值。增强 Suzuki-Trotter 近似的结果需要对 Suzuki-Trotter 步骤进行无限细分。
近几年来,电池需求量最大,在移动电子设备、电网和电动汽车中的大规模应用是环保的最新优势 [1- 5]。离子电池需求量最大。与其他具有较长充放电周期和较高能量密度的电池相比,锂离子 (LIB) 是最先进、最稳定的电池技术 [6–9]。钠离子电池 (NIB) 的需求量也很大,因为它们的化学性质相似、存储容量高,而且是地球上最丰富的材料,这使得钠可以与锂竞争。大量实验表明,2D材料表现出高容量[10-14],低开路电压,良好的循环稳定性,其中实验合成的MAX相2D MXenes M n+1 AX n(n=1,2,3..)在电池负极材料中显示出更好的效果,其中M为过渡金属族(Ti,V,Zr,Hf等),A为13-14族元素(Si,Al,Ge,Ga等),X为碳化物或氮化物族[15-21]。其中Ti 3 C 2 报道的容量为410 mAhg -1 Li原子/1C[22]。同时,密度泛函理论(DFT)预测其容量为320 mAh.g -1 。在用卤素基团(F、OH 等)封端后形成 Ti 3 C 2 Li 2 ,锂容量会大幅降低 [23]。最近,通过 Hf 3 [Al(Si)] 4 C 6 固溶体和氢氟酸选择性蚀刻合成了 MXenes Hf 3 C 2
了解自旋波(SW)阻尼以及如何将其控制到能够放大SW介导的信号的点是使所设想的宏伟技术实现的关键要求之一。甚至广泛使用的磁性绝缘子在其大块中具有低磁化阻尼(例如Yttrium Iron Garnet),由于在最近的实验中观察到的,由于与金属层与金属层的不可避免接触,因此SW阻尼增加了100倍。,adv。量子技术。4,2100094(2021)]以空间解析的方式映射SW阻尼。在这里,我们使用扩展的Landau-lifshitz-gilbert方程对波矢量依赖性的SW阻尼提供了微观和严格的理解,并具有非局部阻尼张量,而不是常规的本地标量尺吉尔伯特damp,从Schwinger-keldysh norther-keldysh nortakys damper中衍生而成。在这张照片中,非局部磁化阻尼的起源以及诱导的波载体依赖性SW阻尼是磁绝缘子的局部磁矩与来自三种不同类型的金属叠层器的传导电子的局部磁矩的相互作用:正常,重型和altermagnetic。由于后两种情况下传导电子的自旋分解能量散布引起的,非局部阻尼在自旋和空间中是各向异性的,并且与正常金属覆盖物的使用相比,可以通过更改两层的相对方向来大大降低。
3 我们想在此指出,影响可再生能源发电份额的因素列表并不详尽(例如,资源可用性和能源强度)。本研究遵循 Moreno 等人的理论方法[9],我们决定保留他们研究的规范。
概述。我们会议的科学计划围绕四个关键主题:(1)研究小种群进化的理论方法,(2)了解复杂人口结构对进化过程的影响,(3)测量野生种群适应度和自然选择的方法,以及(4)保护应用。下面,我们总结了会议期间与每个主题相关的演讲和讨论。完整的会议计划,包括演讲和海报摘要以及演讲录音,可在会议网站上找到:https://smbe-smallpops2023.com/ 研究小种群的理论方法。了解进化如何在小种群中运作的一个核心要素是开发理论和方法方法。理论可以告诉我们在进化模型下我们可能期望在小种群中发生什么,方法可以帮助我们推断重要参数以检验基于理论的假设。
我们描述了一种形式化的系统理论方法,用于创建网络物理系统 (CPS) 风险叠加,以增强 CPS 风险和威胁分析过程中使用的现有基于树的模型。这种自上而下的方法通过分析其底层控制属性以及相关内部硬件和软件子组件之间的通信流,客观地确定系统对某些风险场景后果的威胁面。在使用攻击和故障树模型时,结果分析应有助于定性选择因果事件,这些模型传统上是使用主观和自下而上的方法进行此事件选择。使用经过验证的系统理论方法客观地确定基于树的模型分析的范围也应该可以改善系统开发生命周期中的防御和安全规划。我们提供了一个使用攻击防御树的控制系统案例研究,并展示了如何将这种方法简化为攻击树、故障树和攻击故障树。