BIHAR印度摘要本研究论文探讨了Lindhard筛选理论在研究各种系统中研究有效电子相互作用的应用。 由丹麦物理学家詹斯·林德哈德(Jens Lindhard)开发的Lindhard理论描述了周围电子气体对测试电荷的筛选。 通过应用这一理论,我们可以深入了解不同环境中电子的行为,并了解它们之间的相互作用。 Lindhard筛选理论提供了对许多人体电子气体内电子相互作用的基本理解。 本文探讨了Lindhard理论的理论基础,其数学公式及其对金属中有效电子电子相互作用的影响。 通过检查电子气体对扰动的响应,得出了Lindhard功能,并分析了其对筛选库仑相互作用的影响。 在理解金属的电和热性能中的应用以及超导性和等离子体激发等复杂现象。 关键字:筛选效果,扰动,费米 - 迪拉克分布功能,免费电子模型,费米操作员,Hartree-fock Hamiltonian,Bose Systems,基态能量1. 引入冷凝物理物理学中,了解金属中电子之间的相互作用对于解释各种物理特性和磁性行为至关重要。 金属中的电子通过库仑力相互作用,但是这些相互作用是通过其他电子的存在来改变的。 Lindhard理论,由J.Lindhard于1954年制定。BIHAR印度摘要本研究论文探讨了Lindhard筛选理论在研究各种系统中研究有效电子相互作用的应用。由丹麦物理学家詹斯·林德哈德(Jens Lindhard)开发的Lindhard理论描述了周围电子气体对测试电荷的筛选。通过应用这一理论,我们可以深入了解不同环境中电子的行为,并了解它们之间的相互作用。Lindhard筛选理论提供了对许多人体电子气体内电子相互作用的基本理解。本文探讨了Lindhard理论的理论基础,其数学公式及其对金属中有效电子电子相互作用的影响。通过检查电子气体对扰动的响应,得出了Lindhard功能,并分析了其对筛选库仑相互作用的影响。在理解金属的电和热性能中的应用以及超导性和等离子体激发等复杂现象。关键字:筛选效果,扰动,费米 - 迪拉克分布功能,免费电子模型,费米操作员,Hartree-fock Hamiltonian,Bose Systems,基态能量1.引入冷凝物理物理学中,了解金属中电子之间的相互作用对于解释各种物理特性和磁性行为至关重要。电子通过库仑力相互作用,但是这些相互作用是通过其他电子的存在来改变的。Lindhard理论,由J.Lindhard于1954年制定。让我们探讨林德哈德筛选理论的理论基础,以研究有效的电子电子相互作用。电子电子相互作用在确定固体的性质中起着至关重要的作用。Lindhard筛选理论通过描述电子方式相互筛选的方式提供了一种强大的工具来理解这些相互作用。由Bloch,Bethe,Wilson和其他人在1930年代开发的金属的电子结构理论假设可以忽略电子电子相互作用,并且固态物理学包括基于晶体对称性和原子价的知识来计算和填充电子带。在很大程度上,这起作用。在简单的化合物中,可以通过确定在非相互作用计算中填充频带来可靠地确定系统是绝缘子还是金属。带间隙为
图 2. 示意图,说明评估长程屏蔽能量对带电缺陷的 DFT 超胞计算的贡献。 (a) 带电荷 q 的体缺陷具有无限延伸的电介质屏蔽,内接正方形表示计算超胞的范围。 (b) DFT 超胞将整个净电荷 q 限制在超胞平行六面体内,通过从超胞边缘抽取电子来屏蔽近缺陷区域,从而对边缘区域进行去屏蔽。 (c) 等效体积球体,半径为 R vol ,需要围绕该球体评估长程屏蔽能量。 (d) 该半径减少了 R skin 以解释未屏蔽的晶胞体积,从而得到了由 R Jost 定义的 Jost 经典电介质屏蔽。
引言为了满足对电动汽车续航里程不断增长的需求,锂硫(Li-S)电池受到越来越多的关注,其理论能量密度(2600 Wh·kg -1 )[1]远高于传统锂离子电池(约 400 Wh·kg -1 )[2]。然而,其商业化应用仍然存在一些障碍:多硫化锂(LiPSs)引起的穿梭效应,Li 2 S的分解能大,S和Li 2 S的绝缘性导致的循环寿命较差,正极活性成分利用率低,锂电极钝化[3,4],倍率性能差[5]以及循环过程中体积变化剧烈[6]。为了解决上述问题,一系列碳基材料和金属基材料以硫为主体材料,通过物理或化学作用限制LiPSs。碳基材料包括多孔碳 [7-9]、空心碳 [10-12]、木质碳 [13]、碳纳米纤维和碳纳米管 [14]。金属基材料包括 MXene [5] 和过渡金属氧化物/氮化物/硫化物 [15-19]。
1 南卡罗来纳医科大学医学院神经病学系,南卡罗来纳州查尔斯顿 29425,2 宾夕法尼亚大学生物工程系,宾夕法尼亚州费城 19104,3 南卡罗来纳医科大学基础科学学院神经科学系,南卡罗来纳州查尔斯顿 29425,4 南卡罗来纳大学通信科学与障碍系,南卡罗来纳州哥伦比亚 29208,5 南卡罗来纳大学心理学系,南卡罗来纳州哥伦比亚 29208,6 宾夕法尼亚大学电气与系统工程系,宾夕法尼亚州费城 19104,7 宾夕法尼亚大学佩雷尔曼医学院神经病学系,宾夕法尼亚州费城 19014,8 宾夕法尼亚大学艺术与科学学院物理与天文系,宾夕法尼亚州费城 19014,9 宾夕法尼亚大学佩雷尔曼医学院精神病学系,宾夕法尼亚州费城 19014,10 圣达菲研究所,新墨西哥州圣达菲,NM 87501
弥漫性相关光谱(DC)是一种光学成像方法,可无创,连续地测量血流。它通过测量从组织中恢复的扩散光的斑点强度波动的时间自相关功能来量化血流指数。1 - 4组织动力学的变化导致时间自相关函数的衰减时间的变化。因此,DC可用于检测由神经活动引起的组织动力学。衰减时间的变化通常仅归因于脑血流的变化(CBF)。5,6 CBF的峰通常在神经元激活的开始时通常在几秒钟的时间延迟时发生,这是缓慢且不可行的,对于在诸如大脑 - 计算机接口等应用中的大脑激活中实时概念。
s = 7。8和13 TEV。LHCB [8]宣布发现了另外三个Tetraquark候选人X(4274),X(4500)和X(4700)。不同的作者已经提出了许多模型和方法来研究四方国家。jaffe [9]研究了Quark Bag模型框架中多Quark Hadrons Q 2 2 Q 2的光谱和主要的衰减耦合。在发现J/ Meson后,Iwasaki [10]提出了Tetraquark State T 4 C。Debastiani等。[11]在diquark-antidiquark方法和介子分子中研究了四夸克质量。Chen等。 [12]已经研究了不同J PC状态的diquark-Antidiquark配置中的双重隐藏魅力和底部质量,并且观察到质量高于观察到的自发解离阈值 - 在执行QCD总和时,两个慈善中的自发性解离阈值。 Wang等。 [13]研究了在非相关的夸克模型中,在diquark-antidiquark图片中,S波完全沉重的四夸克状态的质谱,其中一种Gluon交换库仑线性构件型po po-typerient po-tentile typer typer和diquark和Antidiquark之间的高度相互作用。 在组成夸克模型和QCD总规则的背景下,许多作者[14-18]对双重的tetraquark群众进行了研究。 Chakrabarti等。 [19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。Chen等。[12]已经研究了不同J PC状态的diquark-Antidiquark配置中的双重隐藏魅力和底部质量,并且观察到质量高于观察到的自发解离阈值 - 在执行QCD总和时,两个慈善中的自发性解离阈值。Wang等。 [13]研究了在非相关的夸克模型中,在diquark-antidiquark图片中,S波完全沉重的四夸克状态的质谱,其中一种Gluon交换库仑线性构件型po po-typerient po-tentile typer typer和diquark和Antidiquark之间的高度相互作用。 在组成夸克模型和QCD总规则的背景下,许多作者[14-18]对双重的tetraquark群众进行了研究。 Chakrabarti等。 [19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。Wang等。[13]研究了在非相关的夸克模型中,在diquark-antidiquark图片中,S波完全沉重的四夸克状态的质谱,其中一种Gluon交换库仑线性构件型po po-typerient po-tentile typer typer和diquark和Antidiquark之间的高度相互作用。双重的tetraquark群众进行了研究。Chakrabarti等。 [19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。Chakrabarti等。[19]研究了多Quark状态,具有不同的态状态,这些状态也重现了实验预测中的质量。
未经处理的排放。从红泥中浸出有害物质会改变土壤和水的矿物质和微生物稳定性。4使用红泥作为化学合成中矿物质的来源可能会减少红泥积累的环境影响。红泥富含氧化铝,二氧化硅和铁矿物质,可以用作合成沸石,铝利酸盐和中孔材料的前体。5红泥已直接用作吸附剂6,并用作生产陶瓷的原材料,7种地球聚合物,8道路材料,9个铺一个铺在10,10涂层,11和催化剂。12由于其强大的碱性培养基,一些研究人员将红泥作为催化剂。li等。将红泥作为异质的芬顿催化剂利用。13 Hidayat等人。使用钙/红泥催化剂通过转移效应将废料油转化为生物柴油。14该催化剂是通过降低钙的金属盐溶液中的湿浸出的,以钙化为止。红泥中的高氧化铁含量被用作挥发性有机化合物的氧化15的氧化催化剂,并在水力碳热解过程中打破C - C和/或C - H键。16个热和化学物质在用于化学合成之前在红泥中分开杂质。在ZSM-5的合成中,用NaOH处理红色泥浆,以去除可能干扰沸石纯度的铁物种。17一些研究人员通过钙化处理红泥,以将红泥的结晶相变为无定形。18 HCl和H 2 SO 4用于减少
这项研究研究了使用计算和实验方法在太阳能电池中使用的计算和实验方法,研究了新型共轭化合物的几何和电子特性。密度功能理论(DFT)在B3LYP水平上具有6-311g(DP)基集,用于探索这些材料的理论基态几何形状和电子结构。我们检查了环结构和取代基的影响,以更好地了解分子结构和光电特性之间的关系,重点是最高占用分子轨道(HOMO)的能级和最低的未置分子轨道(Lumo)。Homo-Lumo Energy GAP(ΔG)和开路电压(VOC)分析证实了这些材料作为有机染料太阳能电池候选物的潜力。在实验上,使用标准有机合成技术实现了化合物D1,D2,D3和D4的合成。中间化合物是通过冷凝反应合成的,并进一步反应形成了最终的肼产物。使用薄层色谱法纯化了这些化合物,其结构通过光谱技术确认,包括NMR,IR和MS。全面的验证确保了合成化合物的准确性和可重复性,证明了它们作为染料敏化太阳能电池的材料的功效。合并的理论和实验结果为优化这些染料增强太阳能细胞性能提供了坚实的基础。
摘要:这项研究使用了电力动力学极化曲线的测量,电化学障碍光谱(EIS)和量子化学计算来检查硫酸和咖啡因在硫酸硫酸硫酸中硫酸腐蚀的抑制性和吸附性能(H 2 SO 4)溶液(H 2 So 4)溶液。获得的结果表明,在0.5 m H 2 SO 4溶液中,Linalool比咖啡因比咖啡因更有效。电位动力学极化曲线表明,Linalool充当混合型抑制剂,而咖啡因是0.5 m H H 2 SO SO 4溶液中低调钢的阳极型抑制剂。根据阻抗测量值,腐蚀机制发生在激活控制下。理论拟合也用于评估包括Langmuir,Flory-Huggins和动力学模型在内的各种吸附等温线。。这两种抑制剂都通过碳钢表面的物理吸附机制作用。但是,它们的吸附过程是一个非理想的过程。量子化学参数被计算并解释。
15 Aimie Sulaiman,“生存策略(生存策略):研究LOM人的“习惯宗教”,宾夕法尼亚州贝利尼亚区Pejem Village,Bangka Belitung群岛省Blangka Regency',Society',Society',2.1(2014),1-14