引言为了满足对电动汽车续航里程不断增长的需求,锂硫(Li-S)电池受到越来越多的关注,其理论能量密度(2600 Wh·kg -1 )[1]远高于传统锂离子电池(约 400 Wh·kg -1 )[2]。然而,其商业化应用仍然存在一些障碍:多硫化锂(LiPSs)引起的穿梭效应,Li 2 S的分解能大,S和Li 2 S的绝缘性导致的循环寿命较差,正极活性成分利用率低,锂电极钝化[3,4],倍率性能差[5]以及循环过程中体积变化剧烈[6]。为了解决上述问题,一系列碳基材料和金属基材料以硫为主体材料,通过物理或化学作用限制LiPSs。碳基材料包括多孔碳 [7-9]、空心碳 [10-12]、木质碳 [13]、碳纳米纤维和碳纳米管 [14]。金属基材料包括 MXene [5] 和过渡金属氧化物/氮化物/硫化物 [15-19]。
吸附α -AL 2 O 3(0001)ZnO(101̅0)Al 2 O 3 /ZnO(101̅0)E ADS(EV)δQ(E -)E ADS(EV)δQ(E -2) 10 O 2 - 1.531 0.019- 0.895 0.044 al -0.652 - 0.09.2-7 Zn 428 - 0。674-0。674-0.661AL -0.226 -0.041 −0.041 0.0 -027 O 11 - 1.138 0.013 al -0.103 - 0.005 Zn -1.226 0.034
重复使用本文是根据创意共享属性 - 非商业 - 诺迪维斯(CC BY-NC-ND)许可证的条款分发的。此许可只允许您下载此工作并与他人共享,只要您归功于作者,但是您不能以任何方式更改文章或商业使用。此处的更多信息和许可证的完整条款:https://creativecommons.org/licenses/
本研究试图根据原始的改进二维剪切变形理论,阐明简支 FG 型性能梯度材料梁的静态行为分析。杨氏模量被认为是根据组成材料体积分数的幂律分布逐渐连续变化的。应用虚功原理得到平衡方程。因此,利用这里开发的分析模型和 Navier 的求解技术,对简支夹层梁的情况求解控制平衡方程。此外,利用数值结果计算无量纲应力和位移,并与其他理论得到的结果进行比较。提出了两项研究,比较研究和参数研究,其目的一是展示所用理论的准确性和效率,二是分析不同类型梁在不同参数影响下的力学行为。即边界条件、材料指数、厚度比和梁类型。
摘要:这项研究使用了电力动力学极化曲线的测量,电化学障碍光谱(EIS)和量子化学计算来检查硫酸和咖啡因在硫酸硫酸硫酸中硫酸腐蚀的抑制性和吸附性能(H 2 SO 4)溶液(H 2 So 4)溶液。获得的结果表明,在0.5 m H 2 SO 4溶液中,Linalool比咖啡因比咖啡因更有效。电位动力学极化曲线表明,Linalool充当混合型抑制剂,而咖啡因是0.5 m H H 2 SO SO 4溶液中低调钢的阳极型抑制剂。根据阻抗测量值,腐蚀机制发生在激活控制下。理论拟合也用于评估包括Langmuir,Flory-Huggins和动力学模型在内的各种吸附等温线。。这两种抑制剂都通过碳钢表面的物理吸附机制作用。但是,它们的吸附过程是一个非理想的过程。量子化学参数被计算并解释。
已经使用了第一个原理计算与半古典玻尔兹曼理论相结合的第一原理计算研究了间质氮(N)掺杂石墨烯的热电特性。我们发现,与原始石墨烯以及ZT值相比,N掺杂石墨烯的Seebeck Coeffi Cient是3和5.5倍。在室温下,对于原始石墨烯而言,ZT值为0.81,而N-掺杂石墨烯的ZT值分别上升到0.98和1.00,分别为6.25%和50%的氮掺杂。N掺杂石墨烯的Seebeck系数的增加是由于有效质量带的增加所致,因为化学电势升至最小传导带。我们观察到N掺杂的石墨烯在正能范围内表现出最高的ZT值,表明P型特征。我们的发现表明,N型石墨烯具有热电应用的有希望的潜力,并提供了对掺杂石墨烯材料热电特性的基础物理学的见解。
萜类化合物是在各种生物体,尤其是植物中发现的大量有机化合物。萜类化合物具有多种生物学功能和化学特性,并且在生态学,药物和工业中具有重要作用[1-4]。含有萜类化合物的精油生产香水,化妆品和食物[5-8]。几种萜类化合物具有潜在的健康影响。有些具有抗炎,抗菌和抗氧化特性[9-10]。此外,萜类化合物可能是抑制腐蚀剂的,尤其是在易受腐蚀的金属的环境中[11-15]。这些化合物可能在金属表面上形成保护层,从而抑制引起腐蚀的电化学反应。萜类化合物可以通过几种机制作为腐蚀抑制剂,包括在金属表面上形成一个被动层,吸收在金属表面上以防止腐蚀性物质,并在金属溶液界面上改变电化学特性。萜类化合物作为腐蚀抑制剂具有额外的优势,因为它们比许多腐蚀性化合物或合成腐蚀抑制剂更自然和环保[16-20]。关于萜类化合物作为腐蚀抑制剂的实验研究尚未广泛发表。另一方面,分子建模可以提供对绿色有机化合物作为腐蚀抑制剂的潜力的初步见解[21-25]。柠檬型萜类化合物作为铜腐蚀抑制剂。理论研究可以通信作者:rizal@unram.ac.id
在制药行业中发现药物到营销潜在药物的旅程是一个多方面的过程,需要大量投资并包括各个阶段。在此过程中的一个关键步骤称为HIT鉴定阳离子,其中涉及从大量化合物中识别可以与特定C靶标结合的小分子并引起所需的生物学效应,例如抑制疾病引起蛋白质的活性。1 - 4有几种传统的识别方法,5 - 8,但是DNA编码的图书馆(DEL)筛选技术在近年来在学术和制药行业环境中引起了人们的关注。9 - 14该技术涉及编码具有独特DNA标签的许多小分子并将其暴露于靶蛋白上,从而识别出通过测序其DNA标签选择性结合与蛋白质的分子的鉴定(图1)。
未经处理的排放。从红泥中浸出有害物质会改变土壤和水的矿物质和微生物稳定性。4使用红泥作为化学合成中矿物质的来源可能会减少红泥积累的环境影响。红泥富含氧化铝,二氧化硅和铁矿物质,可以用作合成沸石,铝利酸盐和中孔材料的前体。5红泥已直接用作吸附剂6,并用作生产陶瓷的原材料,7种地球聚合物,8道路材料,9个铺一个铺在10,10涂层,11和催化剂。12由于其强大的碱性培养基,一些研究人员将红泥作为催化剂。li等。将红泥作为异质的芬顿催化剂利用。13 Hidayat等人。使用钙/红泥催化剂通过转移效应将废料油转化为生物柴油。14该催化剂是通过降低钙的金属盐溶液中的湿浸出的,以钙化为止。红泥中的高氧化铁含量被用作挥发性有机化合物的氧化15的氧化催化剂,并在水力碳热解过程中打破C - C和/或C - H键。16个热和化学物质在用于化学合成之前在红泥中分开杂质。在ZSM-5的合成中,用NaOH处理红色泥浆,以去除可能干扰沸石纯度的铁物种。17一些研究人员通过钙化处理红泥,以将红泥的结晶相变为无定形。18 HCl和H 2 SO 4用于减少
摘要:使用Ab始于从头算计算,研究了优化的几何形状,以及钝化边缘扶手椅抗氨基烯纳米纤维(ASBNR)的电子和传输特性。由于量子限制,当宽度分别从5 nm降低到1 nm时,带隙的大小可以从1.2 eV到2.4 eV(间接)调节。这项研究的重点是宽度为5 nm(5-ASBNR)的纳米容器,因为它的制造潜力较高,并且可以接受电子应用的带型带。应用单轴压缩和拉伸菌株会减少5-ASBNR膜的带隙。当引入超过4%以上的拉伸应力时,观察到直接带隙转变的间接转换。此外,当引入高于9%的压缩应变时,可以观察到半金属行为。通过施加压缩(拉伸)应变,孔(电子)有效质量降低,从而增加电荷载体的迁移率。研究表明,可以通过在丝带上施加拉伸或压缩应变来调节基于ASBNR的纳米电子设备的载体迁移率。关键字:2D材料,偶然,纳米式,压缩和拉伸应变,带状结构,状态密度■简介