comp。材料计算。∆ e计算。∆ E change PBE (iii) LiF c 10.00 f 8.84 -1.16 NaF c 7.11 f 6.15 -0.97 Mg2F4 c 7.52 f 6.84 -0.68 CaF2 c 7.70 f 7.16 -0.54 SrF2 c 7.27 f 6.83 -0.44 Tl3AsSe3 c 1.16 f 0.74 -0.41 RbF c 5.92 f 5.52 -0.40 Li2I2O6 c 3.30 f 3.81 0.50 (ix) Bi4Cs6I18 f 2.32 i 2.40 0.07 (x) KTaO3 h 2.16 i 2.26 0.10 PBE0 (iii) LiF c 13.45 f 12.29 -1.16 NaF c 10.22 f 9.31 -0.91 Mg2F4 c 10.80 f 10.17 -0.62 CaF2 c 10.63 f 10.14 -0.49 SrF2 c 10.21 f 9.74 -0.47 (vi) Os2As4 b 2.04 e 2.13 0.09 (vii) Fe2P4 d 2.27 e 2.50 0.23 Os2As4 d 1.94 e 2.13 0.18 KTaO3 d 4.32 e 4.45 0.13 AuRb d 0.78 e 0.90 0.12 InP d 1.88 e 1.98 0.10 LiZnAs d 2.10 e 2.19 0.10 (ix) Os2As4 f 2.04 i 2.13 0.09 (x) Os2As4 h 1.94 i 2.13 0.19 KTaO3 h 4.32 i 4.45 0.13 AuRb h 0.82 i 0.94 0.12 CdI2 h 4.05 i 4.16 0.11 InP h 2.03 i 2.12 0.10 SB2TE3 H 1.14 I 1.23 0.09 a:对于比较(i) - (iv),离群值的幅度> 0.4 eV显示,而对于比较(vi),(vii),(ix),(ix)和(x),列出了> 0.09 ev。比较(V)和(VIII)未列出。具体的变化本质上是随机的。
f三层f int 2 2 4 4 f总计0 f int comp 2 1,3 8,3 8,4 64 e h u a k u a k u a k u b g h e k a k a b u k a a b a a= + - + + + - + - (19)
近年来,纳米技术研究受到了广泛关注,这是一个具有许多工业和工程意义的新兴研究领域。使用金属纳米粒子来增强热挤压系统的纳米流体被认为是生物友好、耐用和可持续的产品。纳米流体用于核反应堆、医疗器械、材料制造、化学工业、地热工程、石油工业等基础应用。近年来,人们进行了各种实验和理论计算来探索此类纳米粒子的热物理方面。此外,含有旋回微生物的纳米粒子的流动在微生物燃料电池、生物技术和酶生物传感器中具有有趣的应用。本文的主要目的是利用粗糙集理论生成一组规则,以预测含有旋回微生物的热发展流动中的三级纳米流体的传热性能。应用粗糙集约简技术来查找所有约简,然后提取一组广义规则来预测局部努塞尔特数、局部舍伍德数和运动密度数的值。生成的结果表明,我们的方法可以有效地高精度地预测这些值,并且可能在发电、热挤压系统和微电子等许多工程应用中很有价值。
目标:检验扩展版保护动机理论 (PMT) 中概述的 Covid-19 疫苗接种意向与后续接种之间的相关性。设计:在英国向 50 – 64 岁人群推出疫苗接种计划之初和三个月后进行两波在线调查。措施:50 – 64 岁的未接种疫苗的英国成年人 (N = 438) 完成了 PMT 的基线测量(感知脆弱性、感知严重程度、适应不良反应奖励、反应功效、自我效能、反应成本、意图)以及禁令性和描述性规范、人口统计、Covid-19 经历和既往流感疫苗接种情况的测量。三个月后评估了自我报告的 Covid-19 疫苗接种情况(n = 420)。结果:在控制人口统计、Covid-19 经历和既往流感疫苗接种情况后,扩展的 PMT 解释了 Covid-19 疫苗接种意向 59% 的差异。除感知严重程度和描述性规范外,所有扩展 PMT 变量都是意向的显著独立预测因素。与全国数据一致,94% 的样本报告在随访中接种了 Covid-19 疫苗,并且意向是接种的关键预测因素。结论:增加 Covid-19 疫苗接种的干预措施需要通过强调接种疫苗的好处(例如,在降低风险方面)和可能得到他人认可来增加接种疫苗的意愿,同时也要解决人们对 Covid-19 疫苗可能存在的担忧(例如,安全问题)和常见误解(例如,自然免疫与疫苗)。未来需要在接种率较低的国家和群体中进行研究。
左图:提出的与O-1s和N-1s能级共振的超短X射线脉冲四波混频;中图:理论预测的二维光谱,其中下部显示了氧激发与右侧对氨基苯酚和邻氨基苯酚分子中氮激发的耦合[源自S. Mukamel]。
基于外部电场的超导抑制,超电场效应在各种纳米级设备中实现,可有效。尽管进行了激烈的研究,但缺少这种影响的微观理论。在这里,提出了薄膜中语音介导的超导性超导性的微观理论,其中介绍了量子限制对状态的电子密度,费米能量和电子库仑抑制的影响。通过考虑量子限制,外部静电场,电子 - phonon矩阵元素中的托马斯 - 弗米筛选之间的复杂相互作用,以及限制对库仑排斥参数的影响,该理论预测了外部电场的临界值,这是膜厚度的临界值,而薄膜厚度是在膜厚度上的功能,而超过了超级构造。尤其是,与最近的实验观察一致,电场的这种临界值呈指数降低薄膜的较薄。至关重要的是,当考虑到托马斯 - 弗米筛选和库仑伪电势以及对薄膜厚度的依赖性时,这一效果是由理论预测的。这种微观理论为超电场效应和电场门控量子材料打开了新的可能性。
最近在扭曲双层中进行的扫描隧道显微镜实验[K。 P. Nuckolls等。,自然(伦敦)620,525(2023)]和三层[H. Kim等。,自然(伦敦)623,942(2023)]石墨烯已经揭示了魔法 - 角石墨烯中Kekulé电荷密度波顺序的无处不在。大多数样品都适度紧张,并显示出与理论预测相一致的“kekulé螺旋”(IKS)订单,涉及对Moiré超距离的规模单次调制的石墨烯级电荷密度失真。但是,超级应变双层样品相反,在莫伊尔尺度上显示了石墨烯尺度的kekulé电荷顺序。通过理论预料到了这个秩序,特别是在填充因子ν= -2附近突出的序列,该理论预测了低应变处的时间反转破裂的kekulé电流阶。我们表明,包括Moiré电子与石墨烯尺度光学区 - 角色(ZC)声子的耦合,可以稳定在|处的均匀的Kekulé电荷有序状态。 ν| = 2具有量化的拓扑(自旋或异常大厅)响应。我们的工作清楚地表明,这种语音驱动的电子顺序的选择如何出现在Moiré石墨烯的强耦合方案中。
可调的涡流梁在各种领域具有相关性,包括通信和传感。在本文中,我们证明了具有二阶非线性敏感性的材料薄膜中非线性自旋轨道相互作用的可行性。值得注意的是,非线性张量可以混合泵场的长界线和横向成分。我们在从心理上观察到了我们从第二次谐波生成过程中的理论预测。尤其是,我们证明非线性薄膜可用于产生第二谐光灯的矢量涡流束,当时被圆形偏振的高斯束激发时。
摘要:在锂离子电池运行期间,(电)化学侧反应发生在细胞内,可以促进或降解性能。这些复杂的反应在固体,液体和气相中产生副产品。在这三个阶段中研究副产品可以帮助优化电池寿命。要将测得的气相副产品与溶解在液相中的物种相关联,需要等于亨利法律常数等均衡礼节。本工作实施了一个压力衰减实验,以确定乙烯(C 2 H 4)(C 2 H 4)和二氧化碳(CO 2)之间的热力学平衡浓度,它们是在Li-Ion中通常产生的两种气体,其电池在3:7 wt/wt/wt/wt/wt的电池中均为1.2 m lipf 6:碳酸氟乙二烯(15:25:57:3 wt%总成分)。实验测量的压力衰减曲线适合分析溶解模型,并外推以预测平衡时的最终压力。然后使用= k C H 2 4 2.0×10 4 kPa的亨利定律常数和k co d 2 = 1.1×10 4 kpa的用电解质中的部分压力与溶解气体的浓度之间的关系确定亨利定律常数。 这些值与密度功能理论预测的亨利定律常数进行了比较,并在3倍以内显示出良好的一致性。 ■简介用电解质中的部分压力与溶解气体的浓度之间的关系确定亨利定律常数。这些值与密度功能理论预测的亨利定律常数进行了比较,并在3倍以内显示出良好的一致性。■简介