伽玛射线与物质互动©M。Ragheb 6/13/2024 1。引言与物质相互作用的伽玛相互作用从屏蔽它们对生物物质的影响的角度很重要。它们被认为是电离辐射,其电子和核的散射导致产生含有负电子和正离子的辐射场。与物质相互作用的相互作用的主要模式是其光电和光核形式,康普顿散射和电子正电子对产生的照片效果。在较小的程度上,还会出现光合作用,瑞利散射和汤姆森散射。这些过程中的每一个都以不同的形式出现。可能会根据伽马光子的量子力学特性而发生不同类型的散射。电子正电子对可以在核和电子的场中形成。光电效应可以消除原子电子,而光核反应会从细胞核中淘汰基本颗粒。伽马射线在放射性同位素的衰减过程中发出。在宇宙尺度上,伽玛射线爆发(GRB)或磁铁产生可能影响太空旅行和探索的强烈伽马辐射场。此外,由于雷暴的结果,大气中的地面伽马射线闪光爆发(TGF)的爆发相对较高,并且并非来自地面上看到的伽马射线的相同来源。每月观察到大约15至20个这样的事件。伽玛射线气泡。2。伽马光子能量零休息质量(例如伽马光子)的粒子将具有:
执行摘要 目前业界测量应变的惯例是使用电阻箔应变计。这些传感器安装起来很费时,每个传感器需要三根屏蔽线,当需要进行高密度应变测量时,这会给被测结构增加相当大的重量和复杂性。电子仪表也容易疲劳,安装在作战飞机上时需要经常校准。分布式光纤应变测量系统可以大大降低安装成本和复杂性,并解决与电子仪表相关的一些耐用性和性能问题。本报告详细介绍了传统电阻箔应变计和基于瑞利散射的商用光纤分布式应变测量系统的性能之间的实验比较。所给出的结果比较了两个系统之间的应变响应、空间分辨率和噪声水平,首先是在包含疲劳裂纹的试样上,其次是在由退役 F/A-18 中心筒组成的全尺寸疲劳试验件上,该试验件受到模拟作战谱载荷。在大多数区域,光学应变数据与使用箔应变计进行的测量结果相比效果良好,但是,该系统存在一些局限性,特别是在高应变梯度区域测量应变时。尽管存在这些局限性,但在许多情况下,与传统电阻箔应变计相比,瑞利散射仍有潜力以大幅降低每个传感点的成本提供详细的应变测量。