在过去的几十年中,数字和模拟集成电路的集成密度和性能经历了一场惊人的革命。虽然创新的电路和系统设计可以解释这些性能提升的部分原因,但技术一直是主要驱动力。本课程将研究促成集成电路革命的基本微制造工艺技术,并研究新技术。目标是首先传授构建微型和纳米器件的方法和工艺的实际知识,然后教授将这些方法组合成可产生任意器件的工艺序列的方法。虽然本课程的重点是晶体管器件,但许多要教授的方法也适用于 MEMS 和其他微型器件。本课程专为对硅 VLSI 芯片制造的物理基础和实用方法或技术对器件和电路设计的影响感兴趣的学生而设计。30260133 电子学基础 3 学分 48 学时
咖啡因和瓜拉纳·塞尔西修斯(Guarana Celsius)以及其他NCAA Celsius未禁止使用的能量饮料被NCAA禁止,正如在几篇文章和社交媒体中错误地报道的那样。不幸的是,有很多错误的信息表明,人参,瓜拉纳,L-肉碱和牛磺酸等成分是非法的兴奋剂,或者瓜拉纳在NCAA法规下受到全面禁令。他们不是。此处提供的信息旨在提供NCAA学生运动员在考虑摄氏摄氏或可能含有咖啡因,瓜拉纳(Guarana)或其他突出显示的其他成分时可以依靠的准确信息。咖啡因没有被NCAA禁止,而是受到限制。学生运动员必须违反尿液中NCAA咖啡因限制的每毫升15微克(UG/ml,百万分之十)才能根据2021-2022 NCAA药物测试计划来测试阳性。根据CPSDA,NCAA体育科学研究所,美国奥运会委员会和ISSN的CPSDA,大约需要500 ng/ml以超过15 ug/ml NCAA咖啡因阈值。新陈代谢可能会有所不同,较低的数量可能是某些学生运动员的关注点。ISSN状态需要10 mg/kg体重来违反奥林匹克药物测试中使用的12 ug/ml阈值,这对应于110-300磅范围内的运动员的500-1,362 mg。
1物理系,威廉和玛丽,威廉斯堡,弗吉尼亚州威廉斯堡,23187,使用2个物理系,阿里加尔穆斯林大学,北方邦阿里加尔大学,北方邦202002,印度3物理部门,秘鲁大学PORNIFICAL天主教大学科学系,秘鲁第1761节,秘鲁4号,美国秘鲁大学。天文学,罗切斯特大学,罗切斯特,纽约,14627年,使用6个费米国家加速器实验室,伊利诺伊州巴达维亚60510,使用7莱昂校园和瓜纳华托校园,瓜纳华托大学,拉斯卡兰大学,拉斯库兰大学。5,瓜纳华托36000,瓜纳华托,瓜纳华托,米西科8日内瓦大学,1211年日内瓦大学4,瑞士9 Centro brgasileiro de pesquisicas,Rua Doutor Xvier Xvier Xvier Sigur 150,Rier 22290-180,Rier 22290-180,Rier 22290-180,Brazil 10 Indial odics of Bryics of Physics,NOTICS 4 NOTICS,NOTICS,UNDICS,NOTICS,INSICS,NOTICS,UNDICE of DAME DAME DAME DAME DAME DAME DAME DAME DAME DAME DAME DAME DAMB塔夫茨大学物理系,马萨诸塞州梅德福,美国埃斯帕尼亚02155,1680 CASILLA 110-V,Valparaíso,Valparaíso,Valparaíso,智利13,明尼苏达大学Duluth,Minnestota Duluth,Minnestota Duluth,Minnestota 55812,美国14美国物理学和天文学系,Yorkem sciences,Insworlio science i i is of of tornotio science Nagar,Mohali140306,印度旁遮普邦16伦敦帝国学院,伦敦帝国学院,伦敦SW7 2BW,英国17宾夕法尼亚大学宾夕法尼亚大学物理与天文学系,宾夕法尼亚大学,宾夕法尼亚大学,19104年,美国19104年,美国18号,沃维克大学,沃维克大学,载于沃维克大学。英国3PJ,2 20马萨诸塞州文科学院,马萨诸塞州北亚当斯教堂街375号,匹兹堡大学,匹兹堡大学,宾夕法尼亚州匹兹堡大学,15260年,美国22美国物理学系,佛罗里达州佛罗里达大学佛罗里达州32611,美国23 ccultad devil devil fivivier,devel fivivier,fivir fivivir,fornefir,
1. Galac MR, Lazzaro BP. 普罗维登斯菌属细菌与天然宿主果蝇的比较病理学。Microbes Infect 2011;13:673–83。2. Johnson AO, Forsyth V, Smith SN, Learman BS, Brauer AL, White AN 等。斯图尔特普罗维登斯菌转座子插入位点测序:导管相关尿路感染的必需基因和适应性因素。mSphere 2020;5:e00412–20 3. O'Hara CM, Brenner FW, Miller JM。变形杆菌、普罗维登斯菌和摩根菌的分类、鉴定和临床意义。临床微生物学评论 2000;13(4):534–46。 4. Rajni E、Jain A、Garg VK、Sharna R、Vohra R、Jain SS。普罗维登斯菌导致泌尿道感染:我们是否走进了死胡同?IJCCM 2022;26(4):446-51。5. Frieri M、Kumar K、Boutin A。抗生素耐药性。J Infect Public Health 2017;10:369-78。6. Huttner A、Kowalczyk A、Turjeman A、Babich T、Brossier C、Elia-kim-Raz N 等。5 天呋喃妥因与单剂量磷霉素对女性无并发症下尿路感染临床缓解的影响:一项随机临床试验。JAMA 2018;319:1781-9。 7. 卢文,钟胜,马翔,徐宁,林德,张克,等。 Fos A11,一种在普罗维登西亚雷特格里 (Providencia Rettgeri) 中发现的新型染色体编码的磷霉素抗性基因。微生物光谱 2023;12(2):e02542–23。 8. Falagas ME、Kastoris AC、Kapaskelis AM、Karageorgopoulos DE。磷霉素用于治疗多重耐药性,包括产生广谱β-内酰胺酶的肠杆菌科感染:系统评价。柳叶刀传染病 2010;10:43–50。 9. Fu KP、Lafredo SC、Foleno B、Isaacson DM、Barrett JF、Tobia AJ 等人。左氧氟沙星(L-氧氟沙星)的体外和体内抗菌活性,左氧氟沙星是一种光学活性的氧氟沙星。抗菌剂化学治疗 1992;36:860-6。
口腔癌负责世界各地的许多死亡,因为它导致了由于治疗失败而导致的复发和转移。常规处理破坏了分化的肿瘤细胞,但肿瘤干细胞种群具有抗性并重新填充肿瘤。Wnt/β-catenin信号传导参与肿瘤干细胞的维持,生存,自我更新和分化及其信号传导,可以通过表观遗传修饰来调节。该项目的目的是确定控制Wnt/β-catenin信号通路及其靶标涉及的表观遗传变化,并研究道路参与肿瘤干细胞积累和口服癌细胞系的化学性。研究了三种野生口服癌菌株(Cal27 wt; SCC9 WT; SCC25 wt)和顺铂耐药性(Cal27 CISR; SCC9 CISR; SCC25 CISR)及其肿瘤干细胞群(CTT+)和非肿瘤干(CTT-temor(CTTT-))。QPCR分析,以评估基因表达和蛋白质印迹以进行蛋白质水平评估。通过细胞可行性测试确定IC50剂量的抑制剂。球体流量和鉴定的CTT+的形成细胞术。染色质免疫沉淀以识别道路的表观遗传调节。Xenoenxe检验用于研究Wnt/β-catenin途径作为治疗靶标的潜力。我们观察到表观遗传机调节基因的表达增加,例如BRD7,EZH2,KDM4C和MLL1和CTNNB1基因,该基因在抗顺铂菌株中编码β-catenin的ctNNB1基因。Wnt/β-catenin途径基因(如APC和GSK3β)在3种化学主义菌株中减少,下游FGF18和MMP7基因增加。CTT+的种群表现出参与组蛋白甲基化的基因的更大表达。β-catenin和甲基化的H3K27ME3和H3K9ME2组蛋白在顺铂抗性菌株和CTT+中也增加了。EZH2(UNC1999)和β-catenin抑制剂(ICG-001和FH535)的抑制剂降低了CTT+的群体,并降低了化学谱系中CTT+的群体,并降低了β-catenin和Ezh2蛋白。H3K27ME3用抑制剂处理后也降低了它。UNC1999治疗增加了上游APC和GSK3β基因的表达,并且对ICG-001,FH535和UNC1999的处理可有效降低CTT+中下游MMP7基因。FH535显示出降低CTT+种群的有效性,尤其是与顺铂和UNC1999结合使用时。β-catenin抑制剂单一疗法或与顺铂和UNC1999结合降低了CTT+躯干表型。在肿瘤组织中施用FH535,FH535+顺铂和UNC1999+FH535之后,肿瘤生长降低,肿瘤β-catenin,Ezh2,H3K27Me3和肿瘤干细胞标记肿瘤降低。通过化学谱系和CTT+CTT+种群中的染色质免疫沉淀,我们确定EZH2与该地区
哈利斯科州是一个高风险州。哈利斯科州新一代卡特尔 (CJNG) 控制着该州大约 80% 的市镇,并通过其地区首领管理各种经济。同时,在与萨卡特卡斯州、米却肯州和瓜纳华托州的边界上,该卡特尔分别与锡那罗亚卡特尔、米却肯州新家族和圣罗莎利马卡特尔存在纠纷。
我的主要研究兴趣是了解土壤微生物群落在人工和自然生态系统中碳和营养物质的生物地球化学循环中的作用。我的主要重点是了解不同的气候变化因素如何影响土壤微生物的活动和功能,以及这种影响如何反馈到全球变暖。我早期的工作(博士)重点研究干旱对碳循环的影响。2017 年,我以博士后研究员的身份加入了维也纳大学(奥地利)微生物学和生态系统科学系 Andreas Richter 教授的团队。在这里,我领导了一个小组开展一项国际气候变化实验(名为“ClimGrass”)的研究,该实验研究了二氧化碳升高、变暖和干旱对土壤微生物群落的共同影响及其对人工山地草原生物地球化学碳和氮循环的作用。我取得了多项突破,包括开发了一种研究土壤微生物生长的新应用。我曾从经验和理论上研究过植物与微生物的相互作用。 2019 年,我发表了一篇评论文章,该文章很快成为植物根系分泌物领域引用次数最高的论文之一(引用次数超过 500 次)。随后,我成功获得了日本学术振兴会颁发的 JSPS 奖学金,以开展自己的项目。该奖项是根据项目提案的竞争性选拔而颁发的(2020 年的成功率为 10.8%)。2022 年,我回到维也纳,担任微生物学和环境系统科学中心的大学助理。2023 年,我获得了 ERC 启动基金,资助了一个名为 EcoMEMO 的项目,并从 2024 年 10 月起担任博洛尼亚大学副教授。