图 1:航空电子设备结构的简单分解,重点介绍选定的导航系统 航空电子设备(航空和电子相结合的术语)应用由于其运行环境而具有非常苛刻和严格的要求。飞机航空电子组件发生故障可能会立即危及生命。因此,必须密切监控和测量航空电子设备的各个方面,以发现安装和维修缺陷。 如图 1 所示,航空电子设备大致分为导航、通信、传感器、显示器和数据记录器等类别。除了电传电子控制飞行系统外,上述分类对大多数现代飞机(民用和军用)仍然有效。本应用说明的重点是重点介绍罗德与施瓦茨用于航空无线电导航信号的各种测试解决方案。此类信号包括甚高频全向无线电测距 (VOR)、仪表着陆系统 - 下滑道 (ILS-GS)、仪表着陆系统 - 定位器 (ILS-LOC) 和标记信标 (MB)。民用测距设备 (DME) 和军用战术空中导航 (TACAN) 已在应用说明 1GP74 中介绍,因此本文不再深入探讨。本文将讨论生成和分析测量解决方案;特别是哪种解决方案最能满足不同航空客户(无论是校准实验室、机场当局、生产还是研发)的需求。
图 1:航空电子结构的简单分解,重点介绍选定的导航系统 航空电子(航空和电子相结合的术语)应用由于其操作环境而具有非常苛刻和严格的要求。飞机航空电子组件的故障可能会立即危及生命。因此,必须密切监控和测量航空电子设备的各个方面,以发现安装和维修缺陷。如图 1 所示,航空电子设备大致分为导航、通信、传感器、显示器和数据记录器等类别。除电传操纵电子控制飞行系统外,上述分类对大多数现代飞机(包括民用和军用飞机)仍然有效。本应用说明的重点是重点介绍罗德与施瓦茨针对航空无线电导航信号的各种测试解决方案。此类信号包括甚高频全向无线电测距 (VOR)、仪表着陆系统 - 下滑道 (ILS-GS)、仪表着陆系统 - 定位器 (ILS-LOC) 和标记信标 (MB)。民用测距设备 (DME) 和军用战术空中导航 (TACAN) 已在应用说明 1GP74 中介绍,因此本文不再深入探讨。讨论了生成和分析测量解决方案;特别是,哪种解决方案最能满足不同航空客户(无论是校准实验室、机场当局、生产还是研发)的需求。
航空法和空中交通管制程序:国际民用航空公约 - 空中航行、航空器适航性、航空器国籍和登记标志、人员执照、空中规则、空中运营、空中交通管理、航空情报服务、机场、搜索和救援、安全、航空器、事故调查、国家法律。 人为表现:基本概念、航空中的人为因素、基础航空生理学和健康维护、人与环境、基础航空心理学、人为错误和可靠性、决策、避免和管理错误 - 驾驶舱管理、人为行为、危险态度的识别(错误倾向)。 气象学:大气、气温、大气压、空气密度、ISA、高度计、风、湍流、热力学、云、雾、薄雾、霾、降水、气团和锋面、压力系统、气候学、飞行危险(结冰、湍流、风切变、雷暴、逆温、山区危险、能见度降低现象)、气象信息、天气图、飞行计划信息、气象服务。 通信:VFR 通信、定义、一般操作程序、相关天气信息术语 (VFR)、通信故障、遇险和紧急程序、甚高频传播的一般原则和频率分配。 飞行原理(飞机):亚音速空气动力学、基本概念、定律和定义、翼型周围的二维气流、系数、机翼和机身周围的三维气流、阻力、地面效应、失速、CL
图 1:航空电子设备结构的简单分解,重点介绍选定的导航系统 航空电子设备(航空和电子相结合的术语)应用由于其运行环境而具有非常苛刻和严格的要求。飞机航空电子组件发生故障可能会立即危及生命。因此,必须密切监控和测量航空电子设备的各个方面,以发现安装和维修缺陷。 如图 1 所示,航空电子设备大致分为导航、通信、传感器、显示器和数据记录器等类别。除了电传电子控制飞行系统外,上述分类对大多数现代飞机(民用和军用)仍然有效。本应用说明的重点是重点介绍罗德与施瓦茨用于航空无线电导航信号的各种测试解决方案。此类信号包括甚高频全向无线电测距 (VOR)、仪表着陆系统 - 下滑道 (ILS-GS)、仪表着陆系统 - 定位器 (ILS-LOC) 和标记信标 (MB)。民用测距设备 (DME) 和军用战术空中导航 (TACAN) 已在应用说明 1GP74 中介绍,因此本文不再深入探讨。本文将讨论生成和分析测量解决方案;特别是哪种解决方案最能满足不同航空客户(无论是校准实验室、机场当局、生产还是研发)的需求。
由于国家公园的自然性以及公众对公园的浓厚兴趣,国家公园管理局 (NPS) 必须收集尽可能多的信息,以帮助了解和保护其生态系统的自然运作,尤其是野生动物的自然运作。研究野生动物最有用的技术是无线电跟踪或野生动物遥测。无线电跟踪是通过使用来自或发送到动物携带的设备中的无线电信号来确定有关动物的信息的技术。传统无线电跟踪系统的基本组成部分是 (1) 由无线电发射器、电源和传播天线组成的发射子系统,以及 (2) 接收子系统,包括“拾音”天线、带接收指示器(扬声器和/或显示器)的信号接收器和电源。大多数无线电跟踪系统涉及调谐到不同频率(类似于不同的 AM/FM 广播电台)的发射器,以便进行个体识别。目前,有三种不同类型的无线电跟踪方法:(1) 传统的甚高频 (VHF) 无线电跟踪、(2) 卫星跟踪和 (3) 全球定位系统 (GPS) 跟踪。甚高频无线电跟踪是自 1963 年以来一直使用的标准技术。然而,无线电跟踪可以被认为是侵入性的,因为它需要活体捕捉动物并在它们身上系上项圈或其他装置。然后必须有人监控来自该设备的信号,因此通常需要人们在车辆、飞机和步行中实地工作。尽管如此,大多数国家公园已经认识到无线电跟踪的好处,并且多年来一直进行无线电跟踪研究;在一些公园,数百只动物已经或正在接受此类研究。因此,一些 NPS 工作人员担心无线电跟踪的实际或潜在侵入性。理想情况下,野生动物研究仍将进行,但不会打扰动物或与公园游客发生冲突。因此,NPS 决定仔细研究无线电跟踪技术和使用情况,以确定 (1) 是否有任何侵入性较小的方法可以提供相同的信息,(2) 无线电跟踪技术的全部范围是什么,以确定是否正在使用侵入性最小的技术,以及 (3) 未来的技术改进是否可能导致侵入性较小的技术。本综述就是结果。我们首先简单概述无线电跟踪技术、其好处、种类、成本和可用性、优点和缺点,以及如果使用可以减少研究侵入性的最新改进。然后,我们考虑是否有任何侵入性较小的非无线电跟踪技术可以提供相同的信息。接下来,我们讨论未来可能的改进,并提出一些有助于减少国家公园野生动物研究期间侵入的改进。最后,我们为想要更全面了解的读者详细回顾了无线电跟踪技术。此次审查还应允许管理人员和科学家确定目前是否正在使用干扰最小的无线电跟踪技术。我们得出的结论是,无线电跟踪似乎没有替代品,但最近该技术的一些改进可以减少其部分干扰。此外,我们建议 NPS (1) 正式评估公园游客对野生动物无线电跟踪研究造成的任何干扰的看法和担忧程度 (2) 帮助最大限度地减少
参考文献 AEEC 618 - 空对地字符导向协议 AEEC 620 - 数据链地面系统标准和接口规范 AEEC 622 - ACARS 空对地网络上的 ATS 数据链应用 AEEC 623 – 字符导向空中交通服务 (ATS) ICAO 附件 3 – 国际空中导航气象服务 ICAO 附件 6 – 航空器运行 ICAO 附件 10 – 航空电信 – 第 3 卷通信系统 ICAO 附件 11 – 空中交通服务 大西洋区域管制中心 (AO-ACC - 巴西) 的运行概念和技术规范 ICAO Doc 9694 - 空中交通服务数据链应用手册 ICAO Doc 9776 - 甚高频数字链路 (VDL) 模式 2 手册 ICAO Doc 9869 - 所需通信性能手册 ICAO Doc 9896 – 使用 IPS 标准和协议的航空电信网络 (ATN) 手册 D-ATIS 技术规范(巴西瓜鲁柳斯和加利昂机场) DCL 技术规范(巴西瓜鲁柳斯和加利昂机场) D-VOLMET 实施技术规范(巴西) GOLD – 全球运行数据链文件 使用 IP 协议实施国家数字网络的指南 IP 网络实施安全指南 加勒比和南美洲地区空中航行计划 – FASID – 表 CNS2A SAM 基于性能的空中航行实施计划(SAM PBIP) CNS/ATM 系统的全球空中航行计划(Doc 9750)– 第四版,“航空系统模块升级”(ASBU)举措。 SAM 路由策略
如今,民用飞机借助外部技术实现自动着陆。最常用的系统称为 ILS(仪表着陆系统),它允许飞机在无需飞行员操作(监控除外)的情况下着陆。其他定位解决方案包括差分 GPS、IRS(惯性参考系统)或 VOR/DME(甚高频全向测距/距离测量设备)。这些技术并非随处可用(未配备或未知的机场)且并非随时可用(存在故障概率)。为了应对这些问题(获得精确的绝对位置)并扩大自动着陆覆盖范围,将研究使用摄像机作为附加信息源。在过去十年中,摄像机技术取得了技术飞跃,因此为每架飞机配备摄像机似乎既简单又便宜。视觉伺服包括使用视觉传感器和计算机视觉算法来控制系统的运动(参见 [1] 中的教程)。第一类控制称为 PBVS(基于姿势的视觉伺服),包括使用视觉测量来估计相机的偏差或方向。第二类控制称为 IBVS(基于图像的视觉伺服),包括控制图像平面中视觉特征的坐标。过去十年来,人们一直在研究用于飞机自动着陆的 IBVS 解决方案;在 [2][3][4][5][6] 中,提出了制导解决方案,以达到并跟踪所需的进近轨迹。尽管如此,这些方案需要开发具有完整链的新制导律(由图像捕获、图像处理和非线性制导算法组成),这可能难以认证
LPP-CNRS,巴黎综合理工学院,法国帕莱索 Jean-Paul Booth 是法国国家科学研究中心 (CNRS) 的研究主管,该中心自 2000 年起驻扎于法国综合理工学院等离子体物理实验室。他在牛津大学物理化学实验室获得博士学位,后加入 CNRS(最初在格勒诺布尔大学)。他还曾担任加州 Lam Research Corporation 的技术总监 (2006-08),负责应用于等离子蚀刻反应器的传感器和终点检测。他专门从事反应气体中低压等离子体的物理和化学实验研究及其与表面的相互作用。他专注于微电子行业材料加工中的射频等离子体,目前正致力于通过全面的诊断测量对双原子气体中的等离子体模型进行严格验证。他完善并应用了许多新颖的光学诊断技术(单光子和双光子激光诱导荧光、高灵敏度宽带吸收光谱、腔衰荡光谱、同步真空紫外吸收)来测量绝对反应物种密度和动力学。他还开发了用于带电粒子诊断的新型电探针和微波共振技术,以及用于现场控制工业等离子体过程的更简单的传感器。他还对电容耦合射频等离子体的物理学感兴趣:射频击穿、甚高频等离子体中的电磁效应,以及用于控制离子和电子通量和能量分布的定制电压波形激励。
AAIB 印度航空事故调查局 ADS-B 广播式自动依赖性监视 AGL 地平面以上 AIP 航空信息出版物 ANOMS 希思罗噪音和航迹保持系统 AOP 航空运营人许可证 ASDA 可用加速停止距离 ASMGCS 先进地面移动引导和控制系统 ATCO 空中交通管制员 ATD 实际离场时间 ATM 假定温度法 ATIS 自动终端信息服务 ATSI 空中交通服务调查 AUW 总起飞重量 CDU 控制和显示单元 C of A 适航证书 C of R 注册证书 CLD 放行交付单元 COI 调查委员会 CPL 商用飞行员执照 DFDR 数字飞行数据记录器 EFB 电子飞行包 FMC 飞行管理计算机 ICAO 国际民用航空组织 IATA 国际航空运输协会 IFR 仪表飞行规则 LVP 低能见度程序 MDS 多静态依赖性监视系统 MHz 兆赫 MTOW 最大起飞重量 NATS 英国国家空中交通服务 NLR 荷兰航空航天中心 NOTAM 飞行员通知 OPT 机上性能工具 PIC 机长 乘客 旅客 QFE 查询:场地海拔 QNH 查询:海高 R/T 无线电话 SMC 地面运动控制 TODA 可用起飞距离 TODR 所需起飞距离 TO/GA 起飞/复飞 TORA 可用起飞滑跑时间 VR 旋转速度 VHF 甚高频 UTC 协调世界时
A 安培 h 小时 oz 盎司 ac 交流电 hf 高频 o.d. 外径 AM 调幅 Hz 赫兹 Ω 欧姆 cd 坎德拉 i.d. 内径 p. 页 cm 厘米 in 英寸 Pa 帕斯卡 CP 化学纯 IR 红外线 pe 可能误差 c/s 每秒周期 J 焦耳 pp. 页数 d 天 L 朗伯 ppm 百万分率 dB 分贝 L 升 qt 夸脱 dc 直流电 lb 磅 rad 弧度 ° C 摄氏度 lbf 磅力 rh 相对湿度 ° F 华氏度 lbf � in 磅力 英寸 s 秒 dia 直径 lm 流明 SD 标准差 emf 电动势 ln 对数(底为 e)秒。节 eq 方程对数对数(底为 10)SWR 驻波比 F 法拉 M 摩尔 uhf 超高频 fc 英尺烛光 m 米 UV 紫外线图。数字 µ 微米 V 伏特 FM 调频 min 分钟 vhf 甚高频 ft 英尺 mm 毫米 W 瓦特 ft/s 英尺每秒 mph 英里每小时 N 牛顿 g 加速度 m/s 米每秒 λ 波长 g 克 mo 月 wk 周 gal 加仑 N � m 牛顿米 wt 重量 gr 格令 nm 纳米 yr 年 H 亨利 编号 数字 面积=单位2(例如,ft 2 、in 2 等);体积=单位3(例如,ft 3 、m 3 等)