本期《英国航天业的规模和健康状况》分析了 2021/22 财年。尽管宏观经济挑战持续存在,但该行业表现出了非凡的韧性,自 2018/19 年以来,行业收入增长了 2.7%。与直接到户 (DTH) 部门相关的方法变化意味着整个行业的总增加值 (GVA)(该行业对 GDP 的贡献)的估计值在一段时间内无法比较。排除 DTH 可以进行这样的比较,非 DTH GVA 在此期间增长了 3.5%,而英国经济整体的 GDP 增长率为 1.3%,这证明该行业的表现优于整个英国经济。工业人口不断增加、私人投资水平持续增长、出口数据强劲、商业导向以及英国航天业不断扩大的前景,尤其是在太空经济等新兴行业,都预示着未来的增长良好。调查受访者对未来三年的积极展望进一步增强了这种乐观情绪。
具有橄榄石结构的磷酸铁锂 (LiFePO 4 或 LFP) 因其环保、高循环性能和安全性而被视为最有前途的锂离子电池正极材料之一 (Wang and Sun, 2015)。与其他锂电池正极相比,LiFePO 4 具有多种优势,例如长寿命、高功率、高安全性和低容量衰减 (Armand and Tarascon, 2008, Ghadbeigi et al., 2015, Dunn et al., 2011)。基于 LFP 的电池已迅速占领市场的各个领域,其未来发展前景仍然光明。尽管它们不是汽车用途的首选,但亚洲市场正在重新评估它们,以降低最终产品的价格并抑制钴的整体使用量 (Gucciardi et al., 2021)。对于此应用,进一步提高电池的性能、降低电池成本,同时认真处理电池生产和处置过程中可能出现的所有环境问题都是适当的。为此,必须开发新的材料合成生产方法和新的电极制造配方 (Liu et al., 2021)。为了实现这些结果,有必要设计具有成本效益且质量可控的材料和电极制造工艺 (Valvo et al., 2017)。过去,在我们的实验室中,使用创新方法合成了性能良好的 LFP,其主要优势在于 LFP 不需要在受控气氛的烤箱中生产,因为可以在空气中获得它 (Prosini et al., 2016)。同时,开始了一项研究活动,以生产含有非氟化水分散性聚合物作为电极粘合剂的电极 (Prosini et al., 2015)。由于该聚合物可分散于水中,因此使用它们可以取代锂离子电池技术中通常用作电极制备溶剂的 N-甲基吡咯烷酮 (NMP),而用水代替。这样不仅可以降低电极的危险性,还可以降低生产成本。事实上,据计算,对整个阴极生产而言,47% 的总工艺能量消耗在电极的干燥过程中,用于 NMP 蒸发和回收 (Wood 等人,2018)。从这两个实验室规模开发的工艺出发,本文我们描述了一个中试工厂的设计,该工厂能够生产公斤级的 LFP 和制备 26 cm2 大小的水基电极。虽然这些工艺的规模与工业规模的工艺无法相比,但同时它们也比实验室规模的工艺要大得多。
本研究应用生命周期评价 (LCA) 评估和比较了三种布洛芬生产路线的环境影响,即 BHC、Bogdan 和新开发的酶合成路线(改进的 Bogdan 工艺)。基于通过文献和实验室实验获得的数据,使用 Aspen Plus V11 ® 模拟了日产 500 克布洛芬的中试规模生产,以生成 LCA 研究的库存数据。选择完善的 BHC 工艺作为基准,以量化创新的酶 Bogdan 流合成工艺的运营和环境效益。比较凸显了采用通过酶催化剂改进的 Bogdan 合成路线的好处。结果表明,在分析的整个影响类别中都可以普遍减少环境影响,并且这种减少的幅度取决于生产系统中的回收效率。考虑到回收效率为 50%,改进的 Bogdan 系统在某些影响类别(如酸化、淡水生态毒性、人类毒性、颗粒物和资源枯竭(矿物、化石、可再生能源))中实现了较低的环境影响,而对其余影响类别的影响则较大。然而,当酶回收率接近 100% 时,这里提出的新工艺在所有影响类别中都获得了更好的环境性能,这对未来的技术发展很有希望。
金属基复合材料 (MMC) 的性能可以根据特定应用进行定制和设计,因此其在各种产品中的使用量正在随着时间的推移而显著增加。然而,MMC 产品的未来用途在很大程度上取决于其有益方面,因此,与传统的非增强单片金属产品相比,以稳健、可重复的方式确保其卓越的物理性能优势至关重要。尽管生产 MMC 产品的途径多种多样,但每种途径都有各自的优缺点。本文概述了 MMC 的先进生产路线。讨论还强调了挑战并提出了 MMC 的未来前景。粉末冶金和铸造路线仍广泛用于生产 MMC。铝合金是当今 MMC 产品中最常用的基质材料。碳化物(例如 SiC、TiC 和 B 4 C)、碳同素异形体(例如 CNT 和石墨烯)和氧化铝(Al 2 O 3)是目前最常用的增强材料。尽管如此,纳米和混合增强材料在小众应用中的使用率正在不断提高。增材制造 (AM) 被认为是 MMC 产品的一种新型生产方法。该工艺代表了一种有前途的 MMC 产品生产方法。
龙舌兰,俗称剑麻或龙舌兰,属于龙舌兰科,是一种旱生多年生叶纤维作物。在印度,剑麻主要分布在奥里萨邦、马哈拉施特拉邦和南部各州。印度可用的剑麻种类有龙舌兰、坎塔拉龙舌兰、克鲁斯龙舌兰、阿曼尼恩西斯龙舌兰和四冷龙舌兰。在这些类型中,A. sisalana 是商业类型,用于纤维生产。剑麻可以在干旱条件下生存,但适合分布均匀、中等降雨的地区。它可以种植在各种土壤上。然而,排水良好的轻质石灰质和砾石土壤是合适的。剑麻主要通过鳞茎和根进行无性繁殖。对于剑麻种植,建议使用 1 立方英尺的坑。坑里填满土壤和有机物混合物。种植方法有两种。接下来是单行种植和双行种植。双行种植的利润总是更高。种植密度取决于土壤的性质和肥力状况、耕作类型、种植者的投资和管理能力。一些合适的间距是 4 m + 1 m X 1 m(4000 株/公顷)和 3 m + 1 m X 1 m(5000 株/公顷)。种植在季风雨开始时进行,以便植物生长良好。在最初几年,不建议收割叶子,行间有足够的空间用于间作马豆、小米和其他小谷子、黑豆等。至少在最初三年,锄草和除草是必不可少的。每次除草后,建议施用 60:30:60 公斤 N、P 2 O 5 和 K 2 O/公顷肥料。叶子的收割从作物生长 3 年零 6 个月时开始。第一次切割 16 片叶子,每次切割时在植物上留 12 片叶子。然后将收获的叶子运送到提取棚,并在同一天或最好第二天尽早部署 raspador 剥皮机提取纤维。将纤维反复在水中冲洗,然后铺在绳子或电线上,直到它足够干燥。一般来说,印度剑麻的平均产量不超过 600 公斤/公顷。然而,改进技术并对剑麻种植园进行适当的管理可以生产 1.5 吨/公顷。一公顷剑麻种植园通常可实现 20,000 卢比的净利润。简介