1 为了满足这一需求,目前的生产可以转向鸡蛋,以避免禽肉生产过剩 2 如果目前的绵羊和山羊种群(130 万只)能够得到有效利用,则产量为粗略水平; 3 乳制品生产的副产品; 4 到 2020 年,预计生产过剩将达到 44%; 3 虽然这是目标,但它并不具有约束力:应密切监测该行业,如果逐步淘汰危及红肉生产,则应延长截止日期
精益调度技术是另一个关键方面。这些技术强调通过拉动系统(例如看板)、节拍时间和均衡生产等方法将生产与客户需求同步。通过将生产与实际客户需求信号保持一致,精益调度可以最大限度地减少生产过剩,并提高资源利用效率。此外,与高级分析和数字工具的集成正在改变精益制造中的 MRP。人工智能 (AI) 和机器学习 (ML) 等技术为需求预测和主动库存管理提供了预测能力。这些工具有助于识别需求模式、优化补货周期并提高决策准确性 [1-5]。
摘要 预计到 2050 年,氢能在经济和实现气候中和的过程中发挥重要作用。要优化其使用,首先需要开发一个高效的存储系统。在生产过剩时期,以可再生能源生产的氢气形式储存能源的本质是为了在能源需求旺盛时期重新利用所储存的能源。储存的氢气还可以用于经济的许多领域,例如化工、炼油和运输行业。本文讨论了波兰大规模储存绿色氢的可能性。研究了地下储氢、液氢储氢、氨储氢以及利用天然气网络进行储氢的潜力。
服装业的过度生产,从而限制了该行业的可持续性。时装业每年生产 1500 亿件服装,[1] 其中 30% 从未售出,超过 50% 在不到一年的时间内就被丢弃,[2] 造成估计 5000 亿美元的价值损失。[3] 全世界每年产生约 9200 万吨纺织废料,[4] 其中 85% 最终被填埋(约占垃圾填埋场空间的 5%)或焚烧(而大多数这些材料可以重复使用)。[5–7] 由于生产过剩和消费过度,这些数字每年都在增长,导致资源浪费、环境污染[8] 以及河流、海洋和饮用水中的微纤维对人类健康构成潜在威胁,这些微纤维可能通过食物链进行生物累积。 [9–15] 尽管纺织废弃物产量很高,但其回收率仍然很低:2015 年只有 15% 的纺织废弃物被收集和分类回收,在此过程中损失了 110 万吨。[16] 大多数回收的纺织品都会流向其他行业,并被降级为价值较低的应用。[17]
本研究旨在确定阿尔巴尼亚发罗拉可再生能源的互补指数。该市的电力供应主要以水力发电为主。近年来,随着负荷需求的增加,利用可再生能源的需求也日益增加,而阿尔巴尼亚优越的地理位置也推动了这一需求。分析不同时间和空间尺度上的风能和太阳能数据对于优化这些能源的发电至关重要。这两种能源之间的互补性可以减少混合系统中对储能的需求。确定最佳互补性可确保持续的能源供应,同时防止生产过剩。通过检查每月平均风速和太阳辐射数据,我们可以预测使用适合该地区的光伏系统和涡轮机的每月发电量。根据太阳能和风能生产的预测图,我们确定了时间、能量和幅度的互补指数。结果表明,它们的生产在一段时间内具有中等程度的同步性,尽管它们并不总是完全互补。
摘要 —近年来,半导体行业将制造外包给低成本但不一定值得信赖的代工厂。这种无晶圆厂商业模式面临着新的安全挑战,包括盗版和生产过剩。一种防止未经授权产品运行的经过充分研究的解决方案是逻辑加密,其中使用只有设计人员知道的密钥对芯片进行加密。然而,大多数逻辑加密解决方案都容易受到密钥一致性和探测攻击。在本文中,我们首先提出 GSAT,一种对使用 SAT 模型的现有 IC 特定逻辑加密方案的全局攻击,它可以有效解密可插入所有加密 IC 的隐藏全局密钥。接下来,我们提出了一种高度安全且低成本的补救措施,称为 SPLEnD:基于强 PUF 的逻辑加密设计。传统的 IC 特定加密方案容易受到 GSAT 攻击,而 SPLEnD 不仅可以有效抵抗 GSAT,而且还平衡了安全性和效率。
UDC 621.3 https://doi.org/10.20998/2074-272X.2022.3.07 M. Ali Moussa、A. Derrouazin、M. Latroch、M. Aillerie 使用基于模糊逻辑的智能控制器的混合可再生能源生产系统简介。本文提出了一种改进的能源管理和优化系统,该系统采用基于模糊逻辑技术的智能经济策略,具有多个输入和输出 (I/O)。它用于控制由光伏太阳能电池板、风力涡轮机和电网辅助的电能存储系统构建的混合电能源。这项工作的新颖之处在于,太阳能光伏、风力涡轮机和存储系统能源优先于电网,仅在恶劣天气条件下才会征用,以便为每天使用高达 4,000 Wh 的典型家庭供电。此外,在有利气候条件下产生的剩余可再生能源可用于电解系统生产氢气,适用于家庭取暖和烹饪。目的。开发基于模糊逻辑技术的智能经济策略的改进能源管理和优化系统。该系统嵌入在 Arduino 2560 mega 微控制器上,在该微控制器上,模糊逻辑的基本程序和所有可能场景的事件分配已根据流程图实现,从而允许管理混合系统。为了应用所提出的技术来确保家庭的连续住宿,我们进行了方法以及参数搜索和模拟以表征系统。结果。所提出的系统结果通过可视化电子开关的输出控制信号证实了其有效性。其实际值通过单相 DC/AC 转换器传输电力,为住宿的 AC 负载供电。参考文献 20,图 9。关键词:混合能源系统、可再生能源、电池存储、模糊逻辑、智能管理。Вступ。 У статі пропонується вдосконалена система керування та оптимізації енергоспоживання з інтелектуальною економічною стратегією,заснованою на методі нечіткої логіки з декількома входами та виходами。 Вона використовується для керування гібридними джерелами електричної енергії, побудованими на основі фотоелектричних сонячних панелей, вітрових турбін та системи зберігання електричної енергії за допомогою електричної мережі。 Новизна роботи полягає в тому, що сонячні фотоелектричні, вітряні турбіни та джерела енергії системи зберігання енергії мають пріоритет над електромережею, яка запитується лише за несприятливих погодних умов, щоб забезпечувати типове几天后,4000 Вт год на день。 Крім того、надлишки відновлюваної енергії、що виробляється у сприятливих кліматичних умовах, використовуються для виробництва водню, придатного для опалення та приготування їжі за допомогою електролізера.梅塔。开发基于模糊逻辑方法的智能经济策略的先进能源消耗管理和优化系统。该系统内置于Arduino 2560超级微控制器,它根据流程图实现模糊逻辑和事件分配的主程序以及所有可能的情况,让您可以控制混合系统。为了应用所提出的方法来确保房屋的持续居住,实施了指定的方法以及系统特性的参数搜索和建模。结果。所提系统的实施结果通过可视化电子开关的输出控制信号证实了其有效性。其实际意义在于通过单相直流-交流转换器传输电能,为住宅场所的交流负载供电。圣经。 20,图。 9. 关键词:混合能源系统、可再生能源、电池、模糊逻辑、智能控制。介绍。为了避免电力生产中的污染问题,替代解决方案可以是光伏 (PV)、风能甚至水力发电。此外,配电网络不足以向全世界人口供电:无论是在山区还是在岛屿上,在人迹罕至的地区还是在沙漠中部,由于缺乏技术解决方案或经济可行性,难以进入或非常偏远的地点无法总是连接到电网。然而,由于可再生能源能够适应家庭使用,因此特别适合生产称为孤立站点或微电网的电力。它们通常与电池相连,以确保在生产过剩时储存能量,或弥补高峰消费期间的短暂电力短缺[1-5]。混合能源系统 (HES) 结合了多种来源,例如可再生能源系统 (RES)、国家配电网络(历史网络)、传统能源和存储系统,通常被认为是未来的高效可靠解决方案,已经对单一来源的可再生能源进行了许多分析(规划和规模),主要目的是确定高效和安全运行的最佳系统配置。所提系统的实施结果通过可视化电子开关的输出控制信号证实了其有效性。其实际意义在于通过单相直流-交流转换器传输电能,为住宅场所的交流负载供电。圣经。 20,图。 9. 关键词:混合能源系统、可再生能源、电池、模糊逻辑、智能控制。介绍。为了避免电力生产中的污染问题,替代解决方案可以是光伏 (PV)、风能甚至水力发电。此外,配电网络不足以向全世界人口供电:无论是在山区还是在岛屿上,在人迹罕至的地区还是在沙漠中部,由于缺乏技术解决方案或经济可行性,难以进入或非常偏远的地点无法总是连接到电网。然而,由于可再生能源能够适应家庭使用,因此特别适合生产称为孤立站点或微电网的电力。它们通常与电池相连,以确保在生产过剩时储存能量,或弥补高峰消费期间的短暂电力短缺[1-5]。混合能源系统 (HES) 结合了多种来源,例如可再生能源系统 (RES)、国家配电网络(历史网络)、传统能源和存储系统,通常被认为是未来的高效可靠解决方案,已经对单一来源的可再生能源进行了许多分析(规划和规模),主要目的是确定高效和安全运行的最佳系统配置。所提系统的实施结果通过可视化电子开关的输出控制信号证实了其有效性。其实际意义在于通过单相直流-交流转换器传输电能,为住宅场所的交流负载供电。圣经。 20,图。 9. 关键词:混合能源系统、可再生能源、电池、模糊逻辑、智能控制。介绍。为了避免电力生产中的污染问题,替代解决方案可以是光伏 (PV)、风能甚至水力发电。此外,配电网络不足以向全世界人口供电:无论是在山区还是在岛屿上,在人迹罕至的地区还是在沙漠中部,由于缺乏技术解决方案或经济可行性,难以进入或非常偏远的地点无法总是连接到电网。然而,由于可再生能源能够适应家庭使用,因此特别适合生产称为孤立站点或微电网的电力。它们通常与电池相连,以确保在生产过剩时储存能量,或弥补高峰消费期间的短暂电力短缺[1-5]。混合能源系统 (HES) 结合了多种来源,例如可再生能源系统 (RES)、国家配电网络(历史网络)、传统能源和存储系统,通常被认为是未来的高效可靠解决方案,已经对单一来源的可再生能源进行了许多分析(规划和规模),主要目的是确定高效和安全运行的最佳系统配置。可再生能源特别适合用于发电,即所谓的孤立站点或微电网。它们通常与电池相连,以确保在生产过剩时储存能源,或弥补高峰消费期间的短暂电力短缺 [1-5]。混合能源系统 (HES) 结合了多种能源,例如可再生能源系统 (RES)、国家配电网 (历史网络)、传统能源和存储系统,通常被认为是未来的解决方案,它高效可靠,已经对单一来源的可再生能源进行了许多分析 (规划和规模),主要目的是确定最佳系统配置以实现高效和安全的运行。可再生能源特别适合用于发电,即所谓的孤立站点或微电网。它们通常与电池相连,以确保在生产过剩时储存能源,或弥补高峰消费期间的短暂电力短缺 [1-5]。混合能源系统 (HES) 结合了多种能源,例如可再生能源系统 (RES)、国家配电网 (历史网络)、传统能源和存储系统,通常被认为是未来的解决方案,它高效可靠,已经对单一来源的可再生能源进行了许多分析 (规划和规模),主要目的是确定最佳系统配置以实现高效和安全的运行。
关于我们 Electrochaea GmbH 正在寻找一位积极主动且经验丰富的工艺工程师,以支持开发团队实现其生物甲烷化工艺的技术商业化。该公司正在开发一种颠覆性的新技术,将二氧化碳转化为甲烷,使用可再生能源和各种二氧化碳原料。Electrochaea 的电转气技术代表了一种商业上可行的解决方案,可用于公用事业规模的能源存储、电网平衡和碳回收。该技术的核心是一种专有的生物催化剂——一种适应性产甲烷古菌菌株,一种单细胞厌氧微生物——它可以有效地将氢气和二氧化碳转化为管道级甲烷,直接注入现有的天然气管网。该公司正在风能和太阳能渗透率高的市场(丹麦、瑞典、德国、比荷卢三国、英国、加利福尼亚等)商业化这种电转气技术,这些市场可再生能源的间歇性导致电力生产过剩时间延长。有利的市场也根据电价、激励计划和现有基础设施来定义。位置 慕尼黑南部 (Planegg)
摘要 — 在零信任无晶圆厂范式中,设计人员越来越担心基于硬件的半导体供应链攻击。逻辑锁定是一种信任设计方法,它在电路中添加额外的密钥控制门,以防止硬件知识产权被盗和生产过剩。虽然攻击者传统上依靠预言机来攻击逻辑锁定电路,但机器学习攻击已经显示出即使没有预言机也能检索密钥的能力。在本文中,我们首先研究了最先进的机器学习攻击的局限性,并认为使用密钥汉明距离作为唯一的模型指导结构度量并不总是有用的。然后,我们开发、训练和测试一种基于可破坏性感知图神经网络的逻辑锁定无预言机攻击,该攻击同时考虑了电路的结构和行为。我们的模型是可以解释的,因为我们分析了机器学习模型在训练过程中解释了什么以及它如何进行成功的攻击。芯片设计人员可能会发现这些信息有助于保护他们的设计,同时避免增量修复。索引术语 — 逻辑锁定、逻辑加密、机器学习、图神经网络、可破坏性、可解释性