在撒哈拉以南非洲的肥料使用:类型和金额v.a.Kelly和A. Naseem农业经济学系,密歇根州立大学,美国关键词:肥料,撒哈拉以南非洲,土壤退化,内容1。 萨哈拉以南非洲的肥料使用历史1.1。 背景1.2肥料消耗1.3。 肥料强度使用1.4。 使用的肥料类型2. 影响肥料增长的因素2.1历史和政策影响2.2。 农业生态区和其他地理因素2.3。 殖民遗产2.4。 人口统计2.5。 国民收入2.6。 基础设施2.7。 作物选择2.8价格和盈利能力3。 化肥对作物生产和环境的影响4。 未来的趋势预期的致谢词汇表书记传记草图总结了撒哈拉以南非洲肥料使用的显着特征(SSA)是(1)使用的有机和无机肥料的数量极少,使用的有机和无机肥料,(2)非常低的强度(2)使用的使用速度很低(Kg/ha),以及(3)的肥料速率。 虽然世界上许多地区都正确关注过度肥料使用的负面影响(富营养化,盐水,铝毒性等。 SSA中的总肥料消耗可能会在未来五到十年的时间内继续缓慢增长,而在消费量的年间波动中仍然很重要Kelly和A. Naseem农业经济学系,密歇根州立大学,美国关键词:肥料,撒哈拉以南非洲,土壤退化,内容1。萨哈拉以南非洲的肥料使用历史1.1。背景1.2肥料消耗1.3。肥料强度使用1.4。使用的肥料类型2.影响肥料增长的因素2.1历史和政策影响2.2。农业生态区和其他地理因素2.3。殖民遗产2.4。人口统计2.5。国民收入2.6。基础设施2.7。作物选择2.8价格和盈利能力3。化肥对作物生产和环境的影响4。未来的趋势预期的致谢词汇表书记传记草图总结了撒哈拉以南非洲肥料使用的显着特征(SSA)是(1)使用的有机和无机肥料的数量极少,使用的有机和无机肥料,(2)非常低的强度(2)使用的使用速度很低(Kg/ha),以及(3)的肥料速率。虽然世界上许多地区都正确关注过度肥料使用的负面影响(富营养化,盐水,铝毒性等。SSA中的总肥料消耗可能会在未来五到十年的时间内继续缓慢增长,而在消费量的年间波动中仍然很重要),大多数SSA的使用太少了肥料的负面影响(土壤养分的迅速损失,生物量不足,用于回收养分和土壤有机物,由于培养转移的培养,将培养扩大到高含量的土地等,森林和林地的丧失,造成了高度的土地等)。
iii。气候风险筛查和评估的摘要1。基于系统范围的评估,由于:(i)气候变化,气候变化增加,气候变化增加,包括水压力,干旱,洪水,山体滑坡以及农业生态区的变化; (ii)由于社会经济状况不佳而导致的高脆弱性取决于气候敏感的生存农业和分水岭生态系统的退化。导致脆弱性的因素包括:(i)水资源和集水管理基础设施不足; (ii)多元化和气候敏感的生计生计和低收入。项目团队使用尼泊尔森林与环境部的报告进行了危害和气候风险评估,以及全国确定的贡献(NDC)2和国家改编计划(NAP)的气候变化情景。3尼泊尔在RCP8.5方案下的温暖速度高于全球平均水平,预计到2080年代,温度预计会升高1.2°C – 4.2°C。4 Sudurpaschim和Karnali省预计会体验最显着的温度升高。RCP4.5中期的降水预计将增长2.1%,长期增加了7.9%,尽管卡纳利(Karnali)的某些地区预计会下降。在RCP8.5下,中期降水预计将增加6.4%,长期增加12.1%,导致极端的气象事件。这些更改
卡廷加生物群系是仅存在于巴西的生物群系,面积广阔但保护程度较低。伊纳蒙斯地区 (RI) 与塞阿拉州的其他地区一样,位于该生物群系中,其气候属半干旱气候,特点是长期少降水。这一条件是该地区生物群落发展出独特适应性的基础。另一方面,它也是半干旱地区造成的环境脆弱性之源,再加上人类活动的影响,使罗德里格斯成为塞阿拉州三个极易受到荒漠化影响的核心区之一。缓解这种环境恶化必须涉及保护栖息在卡廷加的热带鹿,例如棕鹿(Subulo gouazoubira),它因在传播本地植物种子方面发挥的作用而受到认可。由于这些动物的准确识别依赖于分子技术,本项目的总体目标是从基因上识别 RI 生物群落中存在的鹿。为此,将在 RI 的七个地点收集鹿的毛发样本和视频图像,分布在两个主要的生物生态区:塞塔内哈洼地和塞罗特斯山/山脉。除了分子鉴定之外,样本中的 DNA 还将用于产生有关鹿群遗传变异的前所未有的信息,包括线粒体单倍型及其等位基因频率,以及可能的核微卫星。这些数据将用于设计红胸鹿管理单元(UMs-VC),以保护它们。此外,技术改造
内共生生物中,其中一种生物的细胞生活在另一种生物的细胞(或器官)中,在整个生命之树中,在各种各样的分类单元中都进化了很多次,并且通常涉及不同王国生物不同生物之间的亲密相互作用[1]。通过使特殊性获得完全新颖的特征,这种以前独立物种的进化合并在进化创新中具有重要作用[2]。共生介导的创新的显着例子包括自身肉芽的增长和氮固定的增益[4]。这种创新允许共生生物入侵新的生态区[5],并导致形成了全新的生物群落,例如珊瑚礁。因此,内共生体的基础是跨越陆生,淡水和海洋栖息地的许多不同生态系统的功能[6]。通过开放新的生态机会,内共生植物可以充当关键创新,而在进化时段标准可以催化多样化和燃料适应性辐射[7-9],尽管并非总是[10]。除了它们在生物多样性中的作用外,内共生性还可以通过将功能分隔为专业结构或器官,从而使更复杂的生物体的演变[11],从而增加了有机体多功能性和模态性[12]。最重要的是,这在真核细胞的细胞器的共生起源中很明显,这些细胞的细胞器具有专门的代谢功能,如果在大量细胞质中表现出效率(或不可能)。这种提高的效率被认为提供了
摘要:发展中国家数百万人的饮食中普遍存在微量营养素缺乏症,需要采取有效的缓解措施。通过育种开发生物强化品种有望成为解决微量营养素缺乏症的可持续且经济实惠的解决方案。过去十年的育种工作已经产生了数十种生物强化开放授粉品种和杂交品种,适应不同的农业生态区。基因组学和分子工具的进步使得快速鉴定富含必需微量营养素(如维生素 A 原 (PVA)、铁 (Fe) 和锌 (Zn))的玉米品种成为可能。利用多组学驱动的发现来发现大量营养性状背后的遗传因素对于将产品概况中的优质性状育种纳入主流至关重要。分子育种方案以及在育种流程的每个阶段整合新兴的组学工具对于提高遗传增益至关重要。近期阐明微量营养素代谢的势头应扩展到新的育种目标以及同时提高营养品质并减少主食作物中的抗营养因素。利用新技术建立涉及营养基因组学、基因组编辑和农艺生物强化的综合育种方法对于解决营养不安全问题至关重要。本综述强调了整合现代工具加速营养丰富玉米遗传改良的前景。
内共生生物中,其中一种生物的细胞生活在另一种生物的细胞(或器官)中,在整个生命之树中,在各种各样的分类单元中都进化了很多次,并且通常涉及不同王国生物不同生物之间的亲密相互作用[1]。通过使特殊性获得完全新颖的特征,这种以前独立物种的进化合并在进化创新中具有重要作用[2]。共生介导的创新的显着例子包括自身肉芽的增长和氮固定的增益[4]。这种创新允许共生生物入侵新的生态区[5],并导致形成了全新的生物群落,例如珊瑚礁。因此,内共生体的基础是跨越陆生,淡水和海洋栖息地的许多不同生态系统的功能[6]。通过开放新的生态机会,内共生植物可以充当关键创新,而在进化时段标准可以催化多样化和燃料适应性辐射[7-9],尽管并非总是[10]。除了它们在生物多样性中的作用外,内共生性还可以通过将功能分隔为专业结构或器官,从而使更复杂的生物体的演变[11],从而增加了有机体多功能性和模态性[12]。最重要的是,这在真核细胞的细胞器的共生起源中很明显,这些细胞的细胞器具有专门的代谢功能,如果在大量细胞质中表现出效率(或不可能)。这种提高的效率被认为提供了
摘要 芋头(Colocasia esculenta 和 Xanthosoma sagittifolium)是世界各地许多农业生态区种植的功能性粮食作物。这种作物主要由自给自足的农民种植,是数百万人的食物和收入来源。就重要性而言,它在撒哈拉以南非洲种植的块根作物和块茎作物中排名第三。尽管具有文化重要性,但世界产量和产量仍在持续下降。除了导致产量下降的几种生理和生物限制因素外,芋头研究资金不足,甚至被忽视。人们对芋头遗传学及其基因组的复杂性了解甚少,这严重阻碍了改良该作物的传统努力。与山药和木薯等作物相比,芋头基因组研究有限。尽管如此,多年来,分子技术已应用于芋头研究,以开发分子标记、遗传连锁图谱、进行功能基因组分析和开发分子诊断工具。已经为某些芋属品种开发了芋属转化和组织培养方案。这些工具有助于更好地了解作物的起源、现有种质的遗传多样性及其影响的病原体、主要疾病的快速检测、复杂性状的保护和遗传改良(包括抗病性和提高产量)。随着下一代测序成本的降低,需要进一步努力资助基因组研究,以便在芋属等非模式生物中进行新基因发现、分子通路分析、基因工程和分子育种。
AEZ 农业生态区 ASC 农业指导委员会 ASCG 农业部门咨询小组 ASDP I 农业部门发展计划第一期 ASDP II 农业部门发展计划第二期 ASLMs 农业部门牵头部委 ATIs 农业培训机构 CBOs 社区组织 CKM 传播与知识管理 COMESA 东部和南部非洲共同市场 COSTECH 科学技术委员会 CSA 气候智能型农业 CVC 商品价值链 DADP 区农业发展计划 DCP 区商品价值链平台 EAAPP 东非农业生产力计划 EAC 东非共同体 EPZA 出口加工区管理局 ESRF 经济和社会研究基金会 FBS 信仰组织 FETA 渔业教育培训机构 FFS 农民田间学校 FOs 农民组织 FYDP 五年发展计划 GCU 政府通信单位 GDP 国内生产总值增长 ICTs 信息通信技术 IEC 信息教育与通信 ITV 独立电视台 KM 知识管理 KPIs 关键结果领域 LANs 局域网 LGAs 地方政府当局 LITA 畜牧培训机构 LTPP 长期期限远景计划 MATI 农业部培训学院 MoEST 教育部 科技部 MoFP 财政和计划部 NACOTE 国家协调小组 NASSM 全国农业部门利益相关方会议 NCU 国家协调单位
分享贝尔生态区域项目 - 从哪里到哪里?Asaye Asnake是共享Bale Eco-Region项目的项目协调员。根据他的说法,股份的生态区域项目位于欧洲联盟代表团授予埃塞俄比亚的Oomia State的贝尔和西阿西地区。这是一个为期三年零四个月的项目,指定总计550万欧元。该项目的基本目标是保护自然资源上的生物多样性潜力,并确保社区生计改善生态区域。因此,该项目需要保存自然资源的崇高任务,这将确保当地社区的经济利益。还有其他领域引起利益相关者的注意。是什么让您专注于贝尔?bale是埃塞俄比亚有才华的地区之一,其生物多样性或自然资源的潜力很大。这是一所众多植物和动物的众多地方阵列的房屋。Bale Mountain National Park是位于该特定生态区域的世界遗产之一。这使得该区域特有和干预的关注中心。第二大完整的森林,名称为Harena Forest。bale也位于这个特定的生态区域,那里是野生咖啡芽。生态区也是世界上34个生物多样性热点地区之一。因此,在特别关注的情况下,我们需要保护这个特殊的生态区域,因为它是居住在下游社区的1200万人的水源。它包括肯尼亚北部和索马里等跨寄宿生国家。在水力逻辑价值方面,生态区有40多个弹簧,这些弹簧供应埃塞俄比亚的主要五条河流,这些河流也流向地中海和印度洋。生态区域也是基因河流盆地的水源。因此,它在生计改善方面具有巨大的价值。随后,保护这个生态区域意味着确保1200万人的福祉。,除非这个生态区域以可持续的方式保存,否则我们将通过不保存许多生活在下游社区以及整个生态区域的人而疏忽犯罪。考虑到这一点,我们只是选择了该特定项目执行中的干预区域的Bale Eco-Region。如何独立行动的各种利益相关者未能使整体变化成为生态区域的可能性?以前,相关的政府组织和不同的非政府组织参与了与农业发展活动平行的现有自然资源的保护。尽管已经付出了不明智的努力,并且在这方面已经注册了许多成功,但努力缺乏整个领域的整合和协调。在该地区完成的大多数活动都是部门和特定地点。有保存项目一直在生态区域进行保存活动,而没有考虑到生计改善问题。因此,跨部门的集成问题是一个需要引起很多关注的问题。第二个原因在于,生态区将高地社区与低地社区联系起来。但是,以前的干预措施未能注意到这种联系的重要性。这也是需要关注的另一个问题。另一个原因在于政府不同层面上的能力差距在保护自然资源方面以及确保该特定地区的全面发展努力。这也是应解决的另一个挑战。因此,在Share Bale Eco-Region项目中,我们只是考虑了这些问题,并引入了一种确保发展的项目,并注意该特定领域的环境和社会影响。参与项目实施的合作伙伴是谁?他们如何决定作为一个?
香蕉(Musa spp.),包括芭蕉,是亚热带和热带地区 140 多个国家种植的主要粮食和经济作物之一,全球年产量约为 1.53 亿吨,养活了约 4 亿人。尽管香蕉种植广泛且适应多种环境,但其生产面临着农业景观中经常共存的病原体和害虫的重大挑战。基于 CRISPR/Cas 的基因编辑的最新进展提供了变革性解决方案,可提高香蕉的恢复力和生产力。肯尼亚国际热带农业研究所的研究人员已成功利用基因编辑赋予香蕉对香蕉枯萎病 (BXW) 等疾病的抗性,方法是针对易感基因,并通过破坏病毒序列来抵抗香蕉条纹病毒 (BSV)。其他突破包括开发半矮化植物和增加 β-胡萝卜素含量。此外,经菲律宾监管部门批准,已开发出不易褐变的香蕉以减少食物浪费。香蕉基因编辑的未来前景一片光明,基于 CRISPR 的基因激活 (CRISPRa) 和抑制 (CRISPRi) 技术有望提高抗病性。Cas-CLOVER 系统为 CRISPR/Cas9 提供了一种精确的替代方法,证明了成功生成了基因编辑的香蕉突变体。精准遗传学与传统育种的结合,以及采用无转基因编辑策略,将是充分发挥基因编辑香蕉潜力的关键。作物基因编辑的未来前景令人振奋,可以生产出在不同的农业生态区茁壮成长、营养价值极高的香蕉,最终使农民和消费者受益。本文强调了 CRISPR/Cas 技术在提高香蕉的抗逆性、产量和营养品质方面的关键作用,对全球粮食安全具有重要意义。