充满活力的需求和对捕食者的恐惧是塑造动物行为的主要因素,并且两者都可能是运动决策的驱动因素,最终决定了野生动植物的空间生态。对物理景观施加的运动对运动的限制仅与避免风险施加的局势分开考虑,这限制了我们对短期运动决策的理解,以影响长期的空间使用。在这里,我们将物理地形和捕食风险的成本整合到共同的货币,能源中,然后量化其对生活在人体统治景观中的大型食肉动物的短期运动和长期空间生态的影响。使用来自领pumas(puma concolor)的高分辨率GPS和加速度数据,我们计算了累积的物理地形和风险的短期(即5分钟)的能量成本(即5分钟)的成本(对我们的研究人群的主要酸味和恐惧)。物理和风险景观都影响了PUMA短期运动成本,风险通过诱导高能量但低效率的运动行为而产生相对较大的影响。短期运动成本的累积影响导致每日旅行距离和总房屋范围区域减少29%至68%。对于雄性pumas,长期使用空间的模式主要是由人类引起的风险的能量成本驱动的。这项工作表明,与物理地形一起,捕食风险在塑造动物的“能量景观”中起着主要作用,并表明对人类的恐惧可能是影响全球野生动植物运动的主要因素。
呼吁在ICCAS 2022取得巨大成功之后,我们很高兴组织ICCAS 2024会议。目的是促进有关下一代民用飞机和军用飞机的传播和交流科学信息。它提供了一个很好的论坛,可以将学术研究和工业工作结合起来,以研究我们如何开发智能飞机系统,拥有更多的选择自由,对环境,学习能力的敏感性,并能够与船员或操作员自然互动,同时保存他们的心理和身体资源。该领域的最新趋势涉及一些主要方面,例如基于行为,生理和神经系统测量的在线监视飞行表演,设计更生态的人类机器机器接口的设计,从而提供有关飞行或任务状态以支持决策过程的直觉信息,以及支持决策规则,以确保高级操作安全。该会议涉及与神经工程学和人为因素或人工智能有关的广泛理论和实践主题。它主要集中在航空上,但欢迎来自汽车,机器人,无人机或人造代理等广泛领域的贡献。邀请作者使用单词或乳胶会议模板提交最多300个单词的摘要。摘要将由计划委员会审查,可以接受口头或海报演示文稿的接受。如果接受了摘要,则参与者可以选择提交完整的论文(包括8页参考),也可以使用会议模板。全文也将由计划委员会审查。在线摘要汇编将作为开放访问发布。提交指南和信息可在https://events.isae-supaero.fr/event/32/page/145--贡献摘要提交是可选的:学术,工业和学生参与者可以通过简单的注册参加会议。
在对白蚁及其原生动物的营养和代谢的早期实验中,我对微生物与宿主之间的相互关系的可能性很感兴趣。后来似乎也可以进行反刍动物的描述,并针对瘤胃的定量分析进行了实验。在过去的二十五年中追求的这个目标导致了这一专着,这将是对这一重要微生物栖息地的生态的贡献。相对较少的微生物栖息地经过了彻底的定量生态分析。瘤胃的发酵非常适合,因为其相对恒定和连续的性质以及有机物的转化率非常快。尽管对反刍动物共生的分析仍然远非完整,但知识足以制定原理以及对重要参数的识别和测量。前八章包括对瘤胃及其微生物的描述,其活动以及这些活动的程度。本基本的双学科提供了一个框架,可以评估农业的应用。在最后四章中讨论了这些应用:宿主代谢,瘤胃的变化,可能的实际应用和瘤胃功能异常。历史发展已被尽可能完全追溯到,但是在许多情况下,任务的规模阻止了其成就。参考文献将学生介绍给文献并鼓励对证据的独立评估。通过批判性阅读手法的批判性阅读的朋友包括A. L. Black,M。P。Bryant,R。T。J. Clarke,R。W。Dougherty,R。J。Moir,K。ElShazly和D. W. Wright。感谢他们的协助。对他们以及许多在瘤胃的许多方面与我合作的同事和学生,我深深地感激不尽,不仅是因为他们的贡献融入了帐户中,而且还因为他们在这一共同的努力中的热情而更加多。
死亡率机制在开放海洋中的微生物如何促进全球能量和营养循环中起着很大作用。salp是无处不在的上膜膜,是沿海和高纬度系统中大型光致动微生物的众所周知的死亡率来源,但是它们对热带和亚热带开放式海宝中较小原核生物的巨大原核生物的影响尚未得到很好的量化。我们使用鲁棒的定量技术来测量北太平洋亚热带Gyre(地球上最大的生态系统之一)中特定微生物官能团的SALP清除率和富集。我们发现萨尔普斯是以前未知的全球丰富氮固定剂的捕食者。因此,萨尔普斯将新的氮递送到海洋生态系统中。我们表明,海洋的两个主导细胞ProChorococcus和Sar11并未被Salps消耗,该细胞为开放海洋系统中小细胞的优势提供了新的解释。我们还确定了proChorococcus的双重奖励,其中它不仅可以逃脱salp捕食,而且还消除了其主要的混合营养性捕食者之一,即prymnephenephinephinephyte chrysochromulina。当我们建模SALP网格与颗粒之间的相互作用时,我们发现单独的细胞大小无法解释这些猎物选择模式。相反,结果表明替代机制(例如表面特性,形状,营养质量甚至猎物行为)确定哪些微生物细胞被salps消耗。一起,这些结果将萨尔普斯确定为塑造开海微生物群落的结构,功能和生态的主要因素。
这项研究旨在评估人们对Unguja Zanzibar Chwaka湾村庄的红树林生态系统保护的气候变化适应选择的认识。这项研究涉及来自Chwaka,Michamvi和Ukongoroni的278名参与者,并通过问卷调查和半结构化访谈收集了数据。使用SPSS软件和描述性统计数据分析了数据,并使用Microsoft Excel创建了视觉表示。调查结果表明,该地区居民的大量比例意识到基于生态系统的适应性,因为他们将其确定为局部适应的催化剂。实践的适应选择是造林,保护墙的建设,提高政府,委员会和社区成员之间的公众意识,并保护红树林生态系统周围的任何障碍。他们还利用替代能源,建筑材料,多样化的农村生计和迁移,所有这些都对红树林生态系统保护产生了积极影响。本研究使用二进制逻辑模型,在这种模型中,几率(b)为˃1,这意味着事件更有可能发生,并且当优势比为˂1时,描绘了事件的可能性较小。按照二进制逻辑模型表明,当地人知道红树林保护中使用的适应策略。另一方面,替代能源的B值为0.4,表明大多数人选择使用红树林的资源而不是其他替代能源。迁移到邻近城市,它对红树林的生态的影响比选择扩展奇瓦卡湾的社区时的影响要低0.5倍。这是因为搬到另一个城市可以防止人们在红树林上前进,以建造房屋,保护红树林的树木免受建筑工地的砍伐。该研究建议政府为红树林保护区分配资金,包括种植,障碍物建设和植物信息传播。
摘要 目的——本文回顾了工业 4.0 与增材制造 (AM) 的协同作用,并讨论了数据驱动制造系统与产品服务系统的集成作为工业 4.0 革命的关键组成部分。本文旨在通过数字化、数据传输、标记技术、工业 4.0 中的信息和智能功能等工具,强调工业 4.0 对 AM 的潜在影响。 设计/方法/方法——在工业化的各个阶段,制造业对数据的使用和依赖不断增加。在对工业 4.0 和 AM 的回顾中,我们讨论了成功的五大支柱,即物联网 (IoT)、人工智能、机器人技术和材料科学,它们将使供应商、生产者和用户之间的互动和相互依存达到新的水平。研究了 AM 功能的独特效果,尤其是大规模定制和轻量化,结合工业 4.0 中的数据和物联网集成,以支持更高的效率、更大的实用性和更环保的生产。这项研究还说明了如何通过使用物联网和 AM 实现工业 4.0 制造业的数字化,从而实现新的商业模式和生产实践。结果 - 讨论说明了结合物联网和 AM 的潜力,可以摆脱传统大规模生产的约束和限制,同时实现经济和生态节约。还应注意的是,这延伸到通过模拟复杂的生产流程和操作系统实现日益复杂的零件的敏捷设计和制造。本文还讨论了工业 4.0 和 AM 在基于实时数据/反馈提高产品结果的质量和稳健性方面的关系。原创性/价值 - 这项研究表明,结合物联网和 AM 的研究方法如何能够创造实践上的重大变化,从而改变生产和供应模式,从而有可能减少工业系统和产品生命周期对生态的影响。本文展示了工业 4.0 和 AM 的融合如何重塑制造业的未来,并讨论了其中涉及的挑战。
•目前的粮食安全和营养和行星健康状况的合并状态要求采用政策,做法和变化,使粮食系统中有公平的变革性弹性。•在现有的HLPE-FSN报告的基础上,我们将关键术语定义为包括公平的变革性弹性(ETR),冲击,压力,风险,脆弱性,差异脆弱性,敏感性和适应能力为理解和实现ETR所需的术语。•公平的变革弹性(ETR)要求采用多层次的政策和行动,以纠正权力,能力,资源,权利和义务的差异,而不仅仅是回弹回到现状。ETR承认人类社会的弹性与生态系统之间的相互依存关系。它需要粮食系统以外的政策和干预措施来改变社会,经济,政治和文化结构,增加个人,社区和生态系统的代理,并启用随着时间的推移持续的公正,动态和适应性的社会生态反应过程。ETR的食品系统方法有助于为所有人提供粮食安全和营养,确保公平的生计,支持人类健康,再生生态系统,停止生物多样性损失并缩小不平等差距。通过“向前弹跳”以公平原则,生态完整性和人权为基础的新国家,ETR食品系统可以同时改善人类和行星的幸福感,并在短期和长期内减少冲击和压力的频率和强度。•提出的变革理论描述了如何朝着公平的变革性食品系统的弹性发展。这包括在三种变化的方法中需要相互联系,协调和迭代作用。移动结构; 2。促进社会生态的相互依存关系和系统,以及3。基于人权,生态完整性和关怀的核心原则的能力,价值观和代理)。策略和行动,包括政策和资金,行动和倡导,数据和研究,提供了变更机制,以将食品系统转变为公平的弹性以及FSN的六个维度以及更广泛的SDG的实现。
说,生活发生了,一些缺勤不会损害参与年级。如果计划缺席,请提前给我发送电子邮件,并通过在课堂前完成读数来参加。如果无法预料,请给我发送电子邮件,以检查有关跟上材料的信息。无论哪种情况,如果存在定期缺勤的模式,我都会与您联系以讨论如何重新定位。如果模式持续存在,我将扣除参与点。如果您感到不适,请不要在身体上上课;如果您感觉足够好,可以实际参加,请在课堂上提前五分钟给我发送电子邮件,我可以安排缩放链接。新闻项目演示文稿:10%的学生将注册一个课程会议,他们将在其中找到与当天主题相关的新闻故事,并在与班级的5分钟讨论中进行介绍。学生应该在指定班级的那天中午之前向我发送一个Power Point Slide,以伴随他们的演讲。问题集和迷你措施:整个学期中有65%,将有五个主题问题集/迷你牌,学生将在其中收集和/或分析社区生态数据,并以提示的指导实验室报告的形式来解释其结果。通常,数据分析方法的数据收集和简介将在课堂上开始,并且可以进行协作,但是正式的写入和解释将在课堂之外单独完成。将在课堂上提供有关每个问题集或迷你LAB的更多详细信息。截止日期在下面列出。这些任务的目标是通过现实世界应用程序内部化课程概念,并通过用于研究学术,专业和倡导环境中社区生态的一些技能和工具使学生能够。可以为每项任务中的每一个都要求一次性扩展;超越商定的延期延期将扣除积分。
弧形菌根真菌(AMF)可能会对牧场的生态系统弹性和入侵分析产生深远的影响。通过生态反馈机制维护植物群落结构,例如促进营养循环和寄主植物吸收,物理和化学对土壤结构稳定性的贡献,植物竞争的介导表明,AMF可能是压力大干旱环境中的重要促进者。植物-AMF相互作用可能会通过提高本地植物群落社区对干旱,放牧以及对异国植物入侵的抵抗力而影响继承。然而,侵入性的外来植物可能会从与本地AMF社区的关联以及Alter的关联中受益。此外,问题仍然存在于AMF在压力环境中的作用,特别是鼠尾草的菌根依赖性(Artemisia spp。)草原植物。在这里,我们审查了与牧场中与AMF相关的科学文献,特别关注土地管理,干扰和入侵对Sagebrush Steppe中AMF社区的影响。我们强调了与牧场有关的AMF生态学的含义,并讨论了用于测量菌根反应的方法。我们的审查发现了令人信服的证据表明,AMF对干扰和对入侵的抵抗力的适应能力随植物和真菌群落组成而有所不同,包括植物菌根的宿主状况,植物功能行为以及生理适应植物和真菌的干扰。我们通过概述了一个框架来提高对牧场入侵生态的AMF知识的框架。了解AMF在半干旱的Sagebrush草原生态系统中的作用可能需要多种研究方法,因为植物AMF相互作用的高度可变性质,弹性会议的复杂机制以及未知的阈值 - 对环境压力的响应。这可能需要从植物生物量范式中转移到评估菌根的好处,以便在Sagebrush Steppe和其他半干旱生态系统中获得对植物对AMF或缺乏植物的依赖性的更全面看法。©2019范围管理协会。由Elsevier Inc.发布的所有权利保留。
1985 年,库荣、亚历山大湖和阿尔伯特湖湿地根据《拉姆萨尔公约》被指定为国际重要湿地。该湿地也是澳大利亚最重要和最独特的湿地系统之一,具有重要的生态、文化、娱乐、遗产和经济价值。它是墨累-达令盆地内唯一的河口,是“活着的墨累”计划指定的标志性地点。该地点拥有大量本土动植物,包括具有国际和国内重要意义的物种和群落。从 1996 年末到 2010 年中,包括库荣和湖区在内的大部分澳大利亚南部地区经历了长时间的干旱——千年干旱。这对库荣和湖区的生态环境以及包括 Ngarrindjeri 人民在内的当地社区的福祉产生了毁灭性的影响。虽然我们仍然看到长期的不良影响,特别是在库荣南部泻湖内,但干旱将墨累河的困境提上了国家议程,并有助于强调系统末端流动和环境水的重要性。墨累-达令盆地计划的通过以及相应的环境水回收和输送,改善了库荣和亚历山大湖和阿尔伯特湖的生态环境。虽然许多改进是显而易见的,但生态的某些方面经历了持续的变化,最明显的是库荣的沉水植被群落和一些水鸟,特别是候鸟,它们尚未恢复到干旱前的水平。提供保护、维持和振兴库荣所需的领导力是一项个人追求,我决心在担任南澳大利亚环境和水资源部长期间推进这一目标。我要感谢南澳大利亚科学界的奉献精神,他们的成员都是这片湿地的不懈倡导者。这些人和团体收集的长期数据对我们为保护环境而进行的谈判以及为保护库荣、亚历山大湖和阿尔伯特湖开展实地工作起到了重要作用。南澳大利亚政府致力于利用最好的科学、文化和当地知识来管理这片重要的湿地。我赞扬南澳大利亚皇家学会将数十年的监测和研究数据整理成这份关于南澳大利亚最具标志性的河口的重要出版物。