在本课程中,您可以完全不受限制地使用基础模型(ChatGPT、GPT、DALL-E、Stable Diffusion、Midjourney、GitHub Copilot 以及之后的任何模型),用于任何目的,不会受到任何惩罚。但是,您应该注意,所有大型语言模型仍然倾向于编造不正确的事实和虚假引用,代码生成模型倾向于产生不准确的输出,而图像生成模型有时会产生极具攻击性的产品。无论最初来自您还是基础模型,您提交的任何不准确、有偏见、冒犯或其他不道德的内容都将由您负责。如果您使用基础模型,必须在提交的论文中承认其贡献;如果您未经承认就使用基础模型,您将受到惩罚。尽管有这些免责声明,我们还是鼓励使用基础模型,因为它可以让您在更短的时间内提交更高质量的作业。
本文研究了不同的用户界面(UI)设计如何影响用户对生成人工智能(AI)工具的信任。我们采用了OZ方法的向导来测试具有不同UI CHATGPT不同UI变化的三种工具的信任水平的实验。来自不同学科的九名志愿大学学生参加了会议。我们使用问卷来评估参与者与每个工具进行交互后以及与所有工具进行交互后对信任的看法。结果表明,参与者之间的信任水平受生成AI的UI设计的影响,尤其是Avatar设计和文本字体。尽管共享相同的文本源,但大多数参与者还是将CHATGPT评为最值得信赖的工具。结果还强调了对话界面在使用生成AI系统建立信任中的重要性,参与者表达了偏爱促进自然和引人入胜的互动的接口。该研究强调了UI对信任的重大影响,并旨在鼓励对生成AIS的更谨慎的信任。
每项学生成功计划都涉及广泛的跨机构、立法机构、学区、教育服务区和整个教育系统的合作。该计划还包括为学生、家庭、教育工作者、员工、社区组织、专业组织(俄勒冈州学校管理者联盟、俄勒冈州学校董事会协会、俄勒冈州教育协会、教师标准和实践委员会以及其他主要合作伙伴)以及早期学习和高等教育机构提供大量参与、培训和技术援助。
生成式人工智能 (AI) 可以根据提示创建新内容,为教育、娱乐、医疗保健和科学研究等多个领域带来变革潜力。然而,这些技术也带来了政策制定者必须面对的重大社会和政策挑战:劳动力市场的潜在变化、版权不确定性、社会偏见延续带来的风险以及在创建虚假信息和操纵内容时被滥用的可能性。其后果可能包括传播虚假信息、延续歧视、扭曲公共话语和市场以及煽动暴力。各国政府认识到生成式人工智能的变革性影响,并正在积极努力应对这些挑战。本文旨在为这些政策考虑提供信息,并支持决策者解决这些问题。
摘要:本研究提出了一种新的梦境记录方法,该方法结合了非侵入式脑机接口 (BMI)、思维输入软件和生成式 AI 辅助多模态软件。该方法旨在将 REM 睡眠期间的意识过程升华到半意识状态,并产生用于思维输入的信号。我们概述了一个两阶段的过程:首先,使用生成式 AI 开发多模态软件来补充文本流并生成多媒体内容;其次,采用基于摩尔斯电码的打字方式来简化信号要求并提高打字速度。我们通过建议一种涉及植入 BMI 的用户的控制系统来优化非侵入式信号,从而应对非侵入式 EEG 的挑战。文献综述重点介绍了 BMI 打字、意识过程升华以及生成式 AI 在基于文本提示的思维输入方面的潜力方面的最新进展。
堆栈的机电设计使其适应在移动平台和海洋环境中的运行:新的几何形状可以最大限度地减少由海洋环境振荡引起的系统不同点的液体和气体浓度差异。
网络刮擦是一项大规模的处理活动,通常在没有人意识到的情况下进行。这种无形的处理为人们的权利和自由带来了特殊的风险。例如,如果某人不知道他们的数据已被处理,则无法行使其信息权。我们获得了有关缓解措施以应对这种风险的最少证据。这意味着在实践中,生成的AI开发人员可能难以证明其处理如何满足合法利益平衡测试的要求。作为第一步,我们期望生成的AI开发人员显着提高其透明度的方法。例如,他们可以考虑
