9 函数方法 ................................................................................................ 275 9.1 量子力学中的路径积分 .............................................................. 275 9.2 标量场的函数量化 .............................................................. 282 关联函数;费曼规则;函数导数和生成函数 9.3 量子场论和统计力学 ............................................. 292 9.4 电磁场的量化 ...................................................................... 294 9.5 自旋场的函数量化 ...................................................................... 298 反对换数;狄拉克传播子;狄拉克场的生成函数;QED;函数行列式 *9.6 函数形式主义中的对称性 ............................................................. 306 运动方程;守恒定律;沃德-高桥恒等式问题......................................................................................................................312
(L1) 第一单元:数理逻辑:命题演算:语句和符号、联结词、合式公式、真值表、同义反复、公式等价性、对偶律、同义反复蕴涵、范式、语句演算的推理理论、前提的一致性、间接证明方法、谓词演算:谓词、谓词逻辑、语句函数、变量和量词、自由和有界变量、谓词演算的推理理论。第二单元:集合论:集合:集合上的运算、包含-排斥原理、关系:性质、运算、分割和覆盖、传递闭包、等价性、兼容性和偏序、哈斯图、函数:双射、组合、逆、排列和递归函数、格及其性质。第三单元:组合学和递归关系:计数基础、排列、重复排列、循环和限制排列、组合、限制组合、二项式和多项式系数和定理。递归关系:生成函数、序列函数、部分分式、计算生成函数系数、递归关系、递归关系公式、通过代换和生成函数解决递归关系、特征根法、解决非齐次递归关系
课程目标:介绍计数基础、鸽巢原理、排列组合、二项式系数和恒等式、算法复杂性、递归关系、生成函数、容斥原理和图论基础等基本概念和构造。本课程旨在为学生提供学习电气工程高级课程所需的技能。
1。简介:“晶格数量的公式。。。”输入Pick的公式,Dedekind总和,Ehrhart多项式和计算复杂性。。。。。。。92 2。预定。Polyhedra的代数。 引入了欧拉的特征和其他重要估值。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 95 3。 在有理多面体中为整数点生成函数。 与每个理性多面体一起,我们将合理的函数联系起来,并证明了劳伦斯 - Khovanskii – Pukhlikov和Brion的定理。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。Polyhedra的代数。引入了欧拉的特征和其他重要估值。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。95 3。在有理多面体中为整数点生成函数。与每个理性多面体一起,我们将合理的函数联系起来,并证明了劳伦斯 - Khovanskii – Pukhlikov和Brion的定理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。100 4。生成功能的复杂性。有理多面体中整数点集的生成函数的生成函数具有“短”(在polyhedron的输入大小中)表示为有理函数。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。106 5。晶格点的有效计数。显示了在固定维度中计数整数点的多项式时间算法。。。。。。。。。。。。。。。。。。。。110 6。存在“本地公式”。有理多主中的整数点的数量可以表示为多层面部面积的线性组合与系数与系数的线性组合,仅取决于脸部多层的局部结构。。。。。。。。。。。。。。。。115 7。组合Stokes的公式及其应用。a mcmullen的定理被证明,并获得了具有中央对称方面的晶格晶状体和晶格多型的明确公式。。。。。。。。。。。。。。。。。。。。。。。。116
研究团队开发了自适应采样器ASr,一种基于任务多样性、熵和难度动态加权的分 布生成函数,以优化元学习模型的泛化性能,并为此提出了一种通用的元学习算法。 研究团队在多个基准数据集和不同学习场景下对所提方法进行了广泛实验,包括小 样本学习、跨域学习、多域学习和增量学习等,并从多个维度对方法的有效性、泛化性 、计算效率等进行了评估和对比,结果证明了所提方法在不同网络架构和元学习框架下 的优越性能和通用性。
汉密尔顿量 H 的生成函数定义为 F ( t ) = ⟨ e − itH ⟩ ,其中 t 是时间,期望值取自给定的初始量子态。此函数可以访问不同阶数 K 的汉密尔顿量 ⟨ HK ⟩ 的不同矩。F ( t ) 的实部和虚部可以在量子计算机上分别使用一个额外的辅助量子位来评估,该辅助量子位对时间 t 的每个值都有一组测量值。量子比特的低成本使其在量子比特数量有限的近期非常有吸引力。假设可以使用量子设备精确计算生成函数,我们将展示如何在经典计算机上后验地使用此函数的信息内容来解决量子多体问题。说明了几种经典的后处理方法,旨在预测近似基态或激发态能量和/或近似长期演化。这种后处理可以使用基于 Krylov 空间的方法和/或与虚时间演化密切相关的 t 展开方法来实现。使用配对和费米-哈伯德模型在多体相互作用系统中说明了混合量子-经典计算。
课程大纲 逻辑:命题、否定、析取和合取、蕴涵和等价、真值表、谓词、量词、推理规则、证明方法。集合论:集合论中的定义和简单证明、集合的归纳定义和归纳证明、包含和排除原理、关系、关系的图形表示、关系的性质、等价关系和划分、偏序、线性和有序集。函数:映射、单射和全射、函数组合、反函数、特殊函数、递归函数理论、Z 变换。初等组合学:计数技术、鸽巢原理、递归关系、生成函数。图论:图论元素、欧拉图、汉密尔顿路径、树、树遍历、生成树。
单元2特殊功能08小时的特殊功能定义;为整体顺序JN(X)的Bessel函数生成函数; Hermite多项式;为隐士多项式生成功能;特殊功能在物理学中的应用。单元-3傅里叶系列10小时周期功能; Euler Fourier公式; Dirichlet条件;半范围傅立叶系列;间隔的变化; Parseval的身份;在物理学中,很少有傅立叶串联振动串,RLC电路和其他一般应用的应用。单元4积分转换12小时的积分变换;拉普拉斯变换;拉普拉斯变换的特性;逆拉环变换;衍生物和积分的拉普拉斯变换;拉普拉斯方程 - 应用于静电场。
第 1 章由 Zuo、Huang 和 Kuo 撰写,研究了多状态 k-out-of-n 系统性能评估的新理论概念和方法。第 2 章由 Pham 撰写,详细描述了具有多种故障模式的系统可靠性的特征。第 3 章由 Chang 和 Hwang 撰写,通过交换连续 k 系统中工作和故障部件的角色,提出了连续 k 系统可靠性的几种概括。第 4 章由 Levitin 和 Lisnianski 撰写,使用通用生成函数技术和遗传算法相结合的方法讨论了具有两种故障模式的多状态系统的各种可靠性优化问题。第 5 章由 Sung、Cho 和 Song 撰写,讨论了许多不同的解决方案和启发式方法,例如整数规划、动态规划、贪婪型启发式和模拟退火,以解决受多种资源和选择约束的复杂系统结构的各种组合可靠性优化问题。