糖基化在包括糖尿病在内的蛋白质功能和疾病进展中起着至关重要的作用。这项研究进行了全面的糖蛋白分析,比较了健康的志愿者(HV)和DM样品,并鉴定出19,374肽和2,113种蛋白质,其中11104种是糖基化的。总共将287种不同的聚糖映射到3,722个糖基化的肽,揭示了HV和DM样品之间糖基化模式的显着差异。统计分析确定了29个显着改变糖基化位点,在DM中上调了23个,在DM中下调了6个。值得注意的是,在DM中,在Prosaposin的位置215处的Glycan HexNAC(2)Hex(2)FUC(1)在DM中显着上调,标志着其首次报道的与糖尿病的关联。机器学习模型,尤其是支持向量机(SVM)和广义线性模型(GLM),在基于糖基化特征(Glycans,糖基化蛋白质和糖基化位点)区分HV和DM样品时,可以在区分HV和DM样品时获得高分类精度(〜92%:96%)。这些发现表明,改变的糖基化模式可能是糖尿病相关病理生理和治疗靶向的潜在生物标志物。
在真菌,细菌和病毒感染期间,果蝇果蝇在强大的防御反应中进行了强有力的防御反应。我们已经调查了这种辩护,并提出了三种类型的问题:(1)果蝇如何认识到入侵的微生物; (2)识别如何导致细胞内信号传导级联反应和基因重编程的激活; (3)产生哪些效应分子以反对微生物。我们的结果指出了一种复杂的防御机制,该机制基于微生物配体的几种循环,跨膜或胞质受体。结合受体触发了几个不同的信号级联,这些级联在NF-κB家族成员的激活中达到顶点,进而控制了数百种免疫反应基因的表达,其中一些基因具有有效的抗菌活性。与哺乳动物先天免疫机制的严格相似之处指向这种辩护的共同血统,并将在演讲中进行讨论。最近的评论:J.A。Hoffmann(2003)。 果蝇的免疫反应。 自然,第426、33-38卷。Hoffmann(2003)。果蝇的免疫反应。自然,第426、33-38卷。
ganciclovir抗性突变体759R1)100源自人类巨细胞病毒菌株AD169含有两个抗性突变,其中一个是UL97基因,导致受感染细胞中ganciclovir磷酸化的降低[V. V. V.。 Sullivan,C。L. Talarico,S。C. Stanat,M。Davis,D。M. Coen和K. K. Biron,Nature(伦敦)358:162-164,1992]。在本研究中,我们将第二个突变映射到包含DNA聚合酶基因的4.1-kb DNA片段,并表明它赋予了Ganciclovir抗性而不会损害磷酸化。对4.1-kb区域的序列分析显示,在DNA聚合酶的保守区域V中,在987的位置导致了单个核苷酸变化。重组病毒构建为含有DNA聚合酶突变,但不显示与原始突变体759RD100(22倍)相对于Ganciclovir的中间电阻(4至6倍);重组病毒还表现出对ganciclovir循环磷酸盐(7倍),1-(二羟基-2-二羟基甲基) - 环胞嘧啶(12倍)和磷酸二甲基烷基衍生物(S)-1-(S)-1-(3-羟基-2-磷酸磷酸盐)的抗性。 (S)-1-(3-羟基-2-磷酸甲氧基)胞嘧啶(8至10倍)。但是,重组病毒仍然容易受到某些相关化合物的影响。这些结果表明,人类巨细胞病毒DNA聚合酶是Ganciclovir的抗病毒活性的选择性靶标,Ganciclovir是其某些衍生物和磷酸氧基烷基衍生物的选择。支持区域V在底物识别中的作用;并提出由于聚合酶突变而导致人类巨细胞病毒对这些化合物的临床抗性的可能性。
这项研究的目的是通过作者设计的基于开源软件的便携式、低成本、完全可配置、灵活的呼吸计,在封闭系统中实验性地确定经过最低限度处理的琉璃苣茎的呼吸活动。该设备是模块化的,因此传感器位于产品呼吸室外,通过闭合电路连接,可以连续测量 O2 和 CO2 浓度以及压差。通过这些测量,确定了琉璃苣茎在 4 ºC 空气中(20 mL CO 2 kg -1 h -1 和 22 mL O 2 kg -1 h -1 )的呼吸速率及其随 O 2 浓度变化的情况。结果表明,将容器中的O2浓度降低到14%以下,足以使琉璃苣茎在空气中的代谢活性减缓至初始值的35-38%。呼吸系数和压差之间的一致性提供了将该测量值用作代谢变化指标的可能性。
公共基因组资源的可用性可以为科学的管理决策提供证据,从而极大地帮助生物多样性评估、保护和恢复工作。本文,我们调查了生物多样性和保护基因组学的主要方法和应用,同时考虑了实际因素,例如成本、时间、必备技能和当前应用的缺点。大多数方法与目标物种或密切相关物种的参考基因组结合使用效果最佳。我们回顾了案例研究,以说明参考基因组如何促进整个生命之树的生物多样性研究和保护。我们得出的结论是,现在是时候将参考基因组视为基本资源并将其使用作为保护基因组学的最佳实践。
IX. 建议阅读 • Nelson, DL 和 Cox, MM 2017。Lehninger 生物化学原理。第 7 版。WH Freeman & Co Ltd • Satyanarayana, U. 和 Chakrapani, U. 2017。生物化学。第 5 版,Elsevier • Campbell MK 和 Farrell SO 2009。生物化学。第 6 版 Thomson Higher Education。 • Moran LA、Horton HR、Scrimgeour KG 和 Perry, MD 2012。生物化学原理。第 5 版 Pearson, • Voet, D. 和 Voet JG 2011。生物化学。第 4 版。John Wiley。 • Pratt, CW 和 Cornely, K. 2014。基本生物化学。第 3 版。 Wiley • Moorthy, K. 2007. 生化计算基础。第二版。CRC Press
© 作者 2023。开放存取 本文根据知识共享署名 4.0 国际许可协议进行授权,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可协议的链接,并指明是否做出了更改。 本文中的图片或其他第三方资料包含在文章的知识共享许可协议中,除非在资料的致谢中另有说明。 如果资料未包含在文章的知识共享许可协议中,且您的预期用途不被法定规定允许或超出了允许的用途,则需要直接从版权所有者处获得许可。 要查看此许可证的副本,请访问 http:// creativecommons.org/licenses/by/4.0/ 。知识共享公共领域贡献豁免(http://creativecommons.org/publi cdomain/zero/1.0/)适用于本文中提供的数据,除非数据来源中另有说明。
南非约翰内斯堡布拉姆方丹威特沃特斯兰德大学分子与细胞生物学学院、理学院、蛋白质结构功能和研究组; b 西班牙巴塞罗那庞培法布拉大学医学与生命科学系; c 南非大学科学园区农业与动物健康系,南非佛罗里达; d 墨西哥阿波达卡新莱昂自治大学量子科学学院、生物技术和纳米技术研究中心、研究和技术创新园区;以及墨西哥圣尼古拉斯德洛斯加尔萨新莱昂自治大学物理科学学院; f 英国爱丁堡大学工程学院生物工程研究所; g 爱丁堡大学合成与系统生物学中心(SynthSys),英国爱丁堡
摘要:神经递质 (NT) 是人类大脑正常运作所必需的化学信使,在人体生理系统中具有特定的浓度。其浓度的任何波动都可能导致多种神经元疾病和障碍。因此,对快速有效的诊断以调节和管理人类大脑疾病或状况的需求正在迅速增加。NT 可以从天然产物中提取。研究人员已经开发出新的协议来提高传感器的传感能力和环保性。深共晶溶剂 (DES) 已成为可持续化学中广受欢迎的“绿色溶剂”。DES 提供了更大的电位窗口范围,有助于增强传感器的电催化性能,并且具有更高的惰性,有助于电极的腐蚀保护,最终为系统提供更好的灵敏度和耐用性。此外,DES 可在工作电极上轻松电沉积不同的材料,这是电催化传感器的主要先决条件。本文首次详细描述了 DES 作为绿色溶剂在检测和提取 NT 中的应用。我们涵盖了截至 2022 年 12 月有关 NT 提取和监测的在线文章。最后,我们总结了该主题并展望了该领域的未来。
摘要:跌倒和随后的并发症是导致发病率和死亡率的主要因素,尤其是在老年人中。为了解决这个问题,我们旨在开发一种轻巧的动态装置,以增加鞋子和步行表面之间的摩擦,这些设备在各个表面,尤其是冰之间有效。受自然界中发现的爪子和鳞片的启发,我们开发了一系列的基里加米结构,这些结构可用于鞋类外极端,以在前脚中产生较高的摩擦力。我们通过数值模拟,体外表面相互作用和体内人力板测量评估了这些元面孔,以鉴定能够调节一系列表面摩擦的最佳基里加米设计。我们预计这些系统的潜在应用可以帮助减轻各种环境中跌倒的风险。
