研讨会赞助商: 加州理工学院林德科学、社会与政策中心 加州理工学院 Resnick 可持续发展研究所 研讨会组织者: John P. Marken 加州理工学院 Mary E. Maxon Schmidt 科学 Richard M. Murray 加州理工学院 科学作家: Yudhijit Bhattacharjee 研讨会参与者: Zack Abbott ZBiotics Steph Batalis 乔治城大学安全与新兴技术中心 Kirsten Benjamin Pivot Bio Alejandro E. Camacho 加州大学欧文分校 Luis A. Campos 莱斯大学 Yonatan Chemla 麻省理工学院 Tammy Collins Burroughs 威康基金 Gӧzde Demirer 加州理工学院 Steven L. Evans BioMADE Bruce A. Hay 加州理工学院 Subray Hegde 美国农业部 Kelly Hill Corteva 农业科学 Andrea Hodgson Schmidt 科学 Xiao (Eric) Huang Corteva 农业科学 Natalie Hubbard Pivot Bio Smruthi Karthikeyan 加州理工学院 Jennifer BH Martiny 加州大学欧文分校 Keith A. Matthews 马修斯律师事务所 Michael Mendelsohn 环境保护署 Matthew Pava 国防高级研究计划署 Larisa Rudenko 生物政策解决方案 / 麻省理工学院 Bentley Shuster ZBiotics Vincent JH Sewalt 国际香精香料公司 Wiebke Striegel 环境保护署 Yumin Tao Living Carbon PBC Christopher A. Voigt 麻省理工学院 Jared W. Westbrook 美国栗树基金会 Christopher A. Wozniak Wozniak 生物农药咨询公司 Felicia Wu 密歇根州立大学 Yasuo Yoshikuni 联合基因组研究所 Laurie Zoloth 芝加哥大学
摘要 工业大麻是大麻植物 Cannabis sativa Linn,是一种高产的一年生工业作物,可从大麻茎中生产纤维,从大麻种子中生产油。尽管大麻是一种小众作物,但大麻生产目前正在复兴。有 30 多个国家种植大麻,中国是最大的大麻生产国和出口国。欧洲和加拿大也是全球大麻市场的重要参与者。传统上,大麻作为一种纤维植物被用于生产服装、织物、纸张、绳索和建筑材料。作为纤维生产的废弃副产品,麻杆被用于动物的床上用品,种子用于人类营养,例如面粉,油用于从烹饪到化妆品等各种用途。大麻在人类历史上也是一种重要的药用作物。其他较新的应用包括绝缘材料和家具、内饰应用和机动车零部件的汽车复合材料、生物塑料、珠宝和时尚行业、动物饲料、动物床上用品以及能源和燃料生产。含有大麻籽和油的食品目前在全球销售,用于动物和人类营养。它们还可用于饮料和营养产品。大麻油还用于化妆品和个人护理用品、油漆、印刷油墨、洗涤剂和溶剂。据估计,全球大麻市场包含超过 25,000 种产品。目前,建筑和绝缘行业、造纸和纺织行业以及食品和营养领域是主要市场,而化妆品和汽车行业则是增长型市场。创新应用,例如在医学和治疗领域、药妆、植物修复、声学领域、废水处理、生物燃料、生物农药和生物技术等领域,都带来了新的挑战。大麻也是众多基础研究的对象。本综述介绍并讨论了工业大麻的传统用途和新用途。
自1998年发现RNA干扰(RNAi)以来,在应用领域已经取得了一系列令人兴奋的结果(Fire等,1998)。2018年8月10日,美国食品药品监督管理局(FDA)批准了由Alnylam开发的Onpattro(Patisiran)。它用于治疗由遗传性经胸甲状腺素蛋白淀粉样变性(HATTR)引起的神经系统疾病(多神经病)。它也是在全球范围内获得批准的第一个基于RNAi的药物,在使用RNAi技术开发有针对性药物的新时代。在植物保护领域,RNAi已被证明具有巨大的害虫控制潜力。2017年6月15日,美国环境保护署(EPA)批准了世界上第一个表达双链RNA(DSRNA)的抗昆虫的转基因玉米MON87411,以DVSNF7基因的控制来控制rootss,以控制root虫,并在Christiaens et of Kistiariaens eventies extressies et e Christiaens et of Christiaens et and Christiaens et et and.202 and.202 al。RNA生物农药具有以环境友好性和高效率来控制各种害虫和疾病,这是一种有希望的害虫控制策略(Guan等,2021)。尽管一些技术和应用问题仍有待解决,但尖端的研究提出了许多这些挑战的可行解决方案。随着技术和应用问题的解决,基于DSRNA的农药在农业中的应用有望扩大(Lucena-Leandro等人,2022年)。Hough等。目前,关于DSRNA杀虫剂的大规模制造和质量递送的研究该研究主题涵盖了DSRNA合成研究主题的最新进展,即RNAi农药的应用方法以及促进DSRNA的稳定性和效率的计划。成功的RNA农药案例,要克服的障碍和可行的方案,以实现这项技术在现代农业中的广泛应用。审查了基于DSRNA的生物防治具有提供物种选择性且可持续的昆虫管理策略的潜力。
印度泰米尔纳德邦塞勒姆佩里亚尔大学生命科学学院动物学系助理教授。电子邮件:mahes1380@gmail.com 这是一篇开放获取期刊/文章,根据知识共享署名许可 (CC BY-NC-ND 3.0) 条款分发,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。版权所有。大自然从植物中提供了大量的生物活性物质来治疗各种可怕的传染性和非传染性疾病。Gloriosa superba 属于百合科,是一种重要的多年生草本植物,也被称为“光荣百合”。使用氯仿和甲醇提取 G. superb 的花,并在 1000、500、250、125 和 62.5 ppm 浓度下评估其对人类媒介蚊子(致倦库蚊、斯氏按蚊、埃及伊蚊和白纹伊蚊)的植物化学物质和杀虫活性。G. superb 花的氯仿提取物的植物化学分析显示生物碱、黄酮类化合物、皂苷、蛋白质和类固醇的数量较少。G. superb 花的甲醇提取物显示生物碱、黄酮类化合物、鞣酸、酚、皂苷和类固醇的数量较高。G. superba 的两种提取物中均不含蒽醌。甲醇提取物的杀虫活性在 1000 ppm 浓度下分别对致倦库蚊、斯氏库蚊有 100% 的杀虫活性,对埃及伊蚊有 98% 的杀虫活性,对白纹伊蚊有 96% 的杀虫活性。大花金花的氯仿提取物对致倦库蚊、斯氏库蚊、埃及伊蚊和白纹伊蚊的杀虫活性分别为 92%、84%、80% 和 78%。结果表明,大花金花的甲醇提取物可用作生物农药,用于控制引起蚊虫疾病和各种生物应用。
我们非常高兴地代表您代表亚洲PGPR协会及其在印度9个亚洲PGPR印度分会的可持续农业章节,即“可持续农业的综合方法:机会与挑战”,计划于2024年7月29日至30日在Bharathiar coimimbatore举行。本次会议是与亚洲PGPR可持续农业协会合作组织的,由各种教育,工业,企业家和媒体合作伙伴支持。由于PGPR相关的技术目前正在经历急剧增长,因此对PGPR和农作物之间的相互作用的研究已经变得至关重要,被认为对可持续和有机农业的未来起着关键作用。pgpr在可持续农业中表现出重要的作用,可以通过大量降低合成肥料的大量降低,而农药的使用大大减少是一个巨大的挑战。本次会议向生物繁殖者,生物杀菌剂,生物农药,生物刺激剂,生物草药,生物抑制剂,生物氯性药物等越来越重要。,确定联盟中新兴的技术。因此,我们丝毫欢迎您加入我们,并见证农业在使用PGPR策略中使用PGPR策略的进步,以在安全粮食生产中为绿色革命的下一代革命。,在使用PGPR相关的技术到实验室的技术方面,输出将构成一个强大的基础,以解决全球粮食安全问题。在本次会议上,我们将学术界,研究人员,企业家,政策制定者,进步农民和政府官员组成,由来自印度各地的技术专家组成的核心团队,以旨在考虑并了解开发PGPR相关技术的优势和缺点,以供全国各地的农业社区使用。亚洲PGPR印度9章全国会议的议程是通过学术界和行业远见者之间的国家和全球网络建立一个很好的科学审议和讨论PGPR研究的平台。此外,邀请了对PGPR进行研究的人,院士,院士,工业家和政策制定者的可持续农业研究合作,这反过来又对年轻人的创业机会有用。
引言植物是生物,特别是植物,通常由人类栽培(Yassir & Asnah,2019)。作物这一术语通常与草本植物区分开来,草本植物是为了使用而种植的,例如在特定时间收获。世界各地种植的主要作物包括小麦、玉米、水稻、土豆、甘蔗和大豆(Wattimena,2011)。因此,利用土壤微生物来增加养分的利用率和吸收率非常重要。养分含量和植物反应是土壤的化学、物理和生物方面相互作用的结果(Sari 等人,2020 年)。这三个因素相互关联,共同影响土壤肥力,进而影响植物所需养分的形态和有效性以及植物吸收养分的能力。土壤含有两种类型的矿物质,即原生矿物质和次生矿物质。一般而言,所有营养物质均来自母岩及其所含的矿物质(Yassir & Asnah,2019)。土壤是各种微生物的栖息地。土壤微生物包括生活在土壤中的微小生物。土壤微生物的一些例子包括螨虫、昆虫幼虫、蚯蚓、白蚁、蚂蚁、甲虫、藻类、蓝藻、真菌、跳虫、线虫和原生动物。土壤微生物是一类生物,它们可能是最丰富但看起来最微不足道的,然而它们在土壤生态系统的功能中起着非常关键的作用(Febriana,2024)。它们负责有机化合物的分解过程,利用和释放营养物质,甚至起到增加植物对营养物质吸收的作用。在农业生态系统中,土壤微生物可以充当生物肥料、生物农药和设施友好的生物修复剂。 (Tesiana et al., 2024)甚至表示,使用包括枯草芽孢杆菌在内的合生元可以避免高达40%的污染并可以维护环境。此外,土壤微生物有助于减少因使用农用化学品而造成的土壤污染。 (Pratiwi & Asri, 2022) 还解释说,土壤微生物可以降解有机磷农药残留,从而不会降低土壤和农业环境的质量。这不仅有利于植物生长,而且还最大限度地减少了对环境的负面影响。因此,土壤微生物对
摘要。Sutio G,Afifah AN,Maharani R,Basri M.2023。serratia marcescens菌株npkc3_2_21作为内生磷酸盐溶解细菌和昆虫病原体:有前途的组合方法为水稻生物含量和生物农药。生物多样性24:901-909。积累不溶性磷(P)和水稻茎虫害虫(Scirpophaga Innotata)是水稻(Oryza sativa)生产系统中的两个主要限制。在土壤中植物的可溶性形式的可溶性受到限制,因为它被铁(Fe)和铝(Al)固定在酸性土壤中,钙(CA)和镁(MG)中的铝(AL)固定,在碱性土壤中导致碱性土壤中的镁(镁(MG))在土壤中导致P积累。另一个问题是米饭害虫,它是由稻虫(Scirpophaga Innotata)造成的最多的,应该首先占据一席之地,因为造成稻米农作物的年损失。此外,土壤酸度会影响土壤和害虫管理中细菌的生长。该研究强调了锯齿状铜霉菌菌株NPKC3_2_21作为内生根相关的微生物在溶解P中的贡献,以增强植物土壤中P的可用性。Besides, we investigated the effect of entomopathogenic bacteria Serratia marcescens strain NPKC3_2_21 on pests Spodoptera litura as a contribution to the knowledge of the efficacy of Serratia marcescens strain NPKC3_2_21 as an entomopathogenic bacteria for pest controlling management in rice plant.此外,我们评估了铜质铜菌菌株NPKC3_2_21在碱性,中性和酸性pH条件下的生长能力,以表明这些细菌能够在各种pH条件下生长。这些分析表明,锯齿状铜菌株NPKC3_2_21具有潜力为1)内生菌,可对植物没有明显的有害作用进入,2)P)P溶解细菌,可通过产生有机酸,以及3)昆虫造成昆虫的细菌来增强P中P的可用性。此外,在各种pH(酸,中性和碱性)条件下,在土壤中可以在土壤中生长serratia marcescens菌株NPKC3_2_21。因此,我们提出,铜麦铜菌菌株NPKC3_2_21可能是增强根部可用P的替代策略,除了是在稻米作物中施用的生物强糖剂的有前途的作用。
2020年12月8日,副主任安妮·奥克斯特里(Anne Overstreet)生物农药和预防污染部农药计划环境保护局Re:农药; Exemptions of Certain Plant-Incorporated Protectants (PIPs) Derived From Newer Technologies Docket Number: EPA-HQ-OPP-2019-0508 Federal Register Publication Date: 10/09/2020 Dear Deputy Director Overstreet, The American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and Soil Science Society of America (SSSA) represent more than 8,000 scientists in academia, industry, and政府,12,500名认证的作物顾问(CCA)和781名认证的专业土壤科学家(CPSS)。我们是美国最大的专业人士联盟,该联盟致力于美国的农艺,作物和土壤科学学科,我们感谢您有机会对这一拟议规则发表评论。我们的成员和认证的专业人员致力于通过追求农艺,农作物和土壤科学来满足不断增长的世界人口的需求,并支持基于科学的基于基因工程的明智,基于风险的法规。我们祝贺EPA对这一拟议规则,该规则旨在通过降低低风险应用的监管负担来民主化基因编辑技术的应用。我们对基因编辑的机会将为有害生物和病原体耐药性提供的机会感到兴奋,以及减轻气候变化毁灭性影响的其他方法。EPA针对基因编辑的作物(无论风险如何)是其使用的重要威慑作用,尤其是在学术领域。常规育种的定义这导致特种作物的遗传进步较少,改进技术的机会较少,并且教导下一代科学家如何使用它的情况较少。我们很高兴EPA提出了包括通过基因编辑技术在豁免类别的传统繁殖作物类别中创建的某些植物掺入的保护剂。此举将有助于2019年行政命令中概述的目标,以现代化农业生物技术产品的监管框架,例如减轻较小开发商(包括大学)和特种作物的开发商的负担。然而,关于EPA与其豁免有关的许多警告仍然存在很大的担忧。这些警告将使特种作物的开发商非常困难获得豁免,即使他们这样做,EPA也将与使用基因编辑技术相关的监管负担不适用于常规育种技术。
Anne Overstreet 生物农药和污染防治部(7511P) 环境保护署农药计划办公室 1200 Pennsylvania Ave. NW 华盛顿特区 20460–0001 事由:卷宗编号 EPA–HQ–OPP–2019–0508 2020 年 12 月 8 日 我谨代表下列农民、牧场主、合作社、零售商、科学家、植物育种者、种子生产者和共同监管者,代表美国广泛而多样的农业利益相关者,感谢有机会就拟议规则“农药;源自新技术的某些植物内保护剂 (PIP) 的豁免”发表评论和反馈意见。我们赞扬美国环境保护署 (EPA) 为实现生物技术监管体系现代化而做出的努力,该署提议将符合条件的“基于通过生物技术创造的性相容植物的 PIP”从《联邦杀虫剂、杀菌剂和灭鼠剂法案》 (FIFRA) 的大部分要求以及《联邦食品药品和化妆品法案》 (FFDCA) 规定的容差设定要求中豁免。我们赞赏拟议规则的总体愿景,但我们也提出了一些建议,我们认为这些建议将有助于 EPA 制定更科学、更基于风险的最终规则。我们还相信,如果这些建议被采纳,将有助于美国保持其在植物生物技术发展方面的全球领导地位。我们在此解释了统一的基线建议,以增强拟议规则,满足我们各利益相关者的需求。许多签署方还将提交单独的意见,提供与各个利益相关者需求相关的具体建议的更多细节,或提出超出本信函内容的建议。拟议的 PIP 豁免的近期历史背景 了解促使 EPA 提议豁免这一范围狭窄、风险较低的 PIP 子集的近期历史背景非常重要。2015 年 7 月,奥巴马总统的总统行政办公室 (EOP) 发布了一份备忘录,提出了对当前生物技术监管框架在某些情况下强加不必要的成本和负担的担忧,这些成本和负担阻碍了中小企业参与市场,限制了公众对监管流程的理解,从本质上抑制了创新。1 该备忘录成立了一个跨部门工作组,以制定“现代化生物技术产品监管体系的国家战略”(国家战略),该战略于 2016 年 9 月发布。除了重申“美国政府的政策是寻求保护健康和环境的监管方法,同时减少监管负担,避免不合理地抑制创新、污名化新技术或制造贸易壁垒”之外,国家战略还指示 EPA 应该“阐明其对源自基因组编辑技术的杀虫产品的态度。”2
4。地衣:-4.1类型; 4.2繁殖; 4.3经济重要性。4.4地衣在植物继承和污染监测中的作用。5。经济和药用重要性:-5.1蘑菇 - 印度属品种的食品价值和二项式 - agaricus,calocybe,pleurotus和volvariella; 5.2真菌来源和用途 - SCP,贝克酵母,乙醇,柠檬酸,色氨酸, - 淀粉酶,核黄素,Griseofulvin,nystatin和Cyclosporin; 5.3医学真菌学 - 结局的定义;在菌丝中用作“环虫”或滴虫病和念珠菌病的因果生物和抗生素。微生物学1。微生物和微生物学研究 - 主要概念; 1.1原核生物(原核生物)和真核生物的微生物和王国的分类(G. E. Murray 1968&R。H. Whittaker 1969)[初步想法]; 1.2现代分类,签名密码子,三个领域的分类概念(Carl R. Woese 1978)和通用系统发育树的概念(Norman R. Pace 1997)[仅基本概念]。2。古细菌:-2.1特征(简短概述); 2.2细胞壁; 2.3发生。3。4。病毒:-4.1病毒和植物病毒的类型; 4.2植物病毒的传播; 4.3 TMV - 理化特征及其繁殖模式; 4.4 T 4噬菌体 - 结构,感染和裂解周期; 4.5 lambda()噬菌体 - 溶酶体的机制和意义; 4.6病毒和王室。5。细菌:-3.1一般特征; 3.2细菌生长 - 二进制裂变,指数生长和生长曲线(具有单个碳源的封闭系统中的一般模式 - 单相)3.3化学本质,糖卵形,粘液层,果皮层,鞭毛,pili,pili和fimbriae的化学性质,超结构和功能; 3.4细胞壁 - 革兰氏阳性和革兰氏阴性细菌之间的化学性质和差异; 3.5细菌基因组和质粒; 3.6遗传重组 - 转化[DNA摄取的一般过程,自然和诱导的能力和机制],结合['F'因子,F +和HFR男性以及染色体动员]和转导[一般概念和适用性]; 3.7细菌多样性 - 以下组的一般概念和系统位置: - 光合细菌(蓝绿色,紫色和绿色细菌,氧合和氧合群的概念),衣原体,氮固定细菌(符号和非肌生物)(符号和非肌生元),结实和结构细菌,又有细菌,又有元素,且异常,且群体,以及构成的,构成的,构成的,构成的,构成的,构成的,以及构造的群体,及其群体和群体,构造和群体及其群体,放线菌科。应用细菌学:-5.1来源(仅名称)和用途 - 杆菌蛋白,新霉素,链霉素,氯霉素,两性霉素B,淀粉酶,纤维酶,纤维素酶,蛋白酶,赖氨酸,赖氨酸和右旋烷; 5.2生物肥料,生物气体和生物农药的生产中使用的细菌(仅); 5.3霍乱,细菌痢疾,伤寒,白喉,结核病,结核病,瘟疫和肺炎的因果生物(只有名称)。