摘要。在过去的几年中,歧视性和生成性的大语言模型(LLM)已成为自然语言处理的主要方法。,尽管取得了重大进步,但在比较跨语性生物医学概念归一化中判别和生成性LLM的性能仍然存在差距。在本文中,我们对几个LLM进行了比较研究,涉及跨语言生物医学概念通过致密检索的具有挑战性的任务。我们利用涵盖10种语言的XL-BEL数据集来评估模型在不进一步适应的情况下在各种语言环境中概括的能力。实验发现表明,E5是一种判别模型,表现出卓越的性能,而生物分类出现为表现最佳的生成LLM。复制实验的代码可在以下网址提供:https://github.com/hrouhizadeh/zsh_cl_bcn。
概述我们的实践领导的学位对人类人口中的人类生活过程以及疾病和健康提供了令人着迷的见解。您将使用我们最先进的生命科学实验室来开发一系列实用和分析技能。我们的目的是为您提供进入各种生物医学科学职业所需的技能和知识。该课程处于生物医学科学研究所(IBMS)基金会年的认证的最后阶段。基金会(BSC)(荣誉)生物医学科学的基础年度课程是专门设计的,旨在支持您对健康科学学位研究的过渡。作为一名学生,您将进行位于3级研究的基础年份,该研究被设计为您所选学位课程的序幕,为您提供了发展知识,技能和理解的机会。您的基础年度学习旅程将提供一个安全的平台,您可以在高等教育的整个学术生涯中建立该平台。作为基础年份的一部分,您将探索和发展基本的学术,人际交往和专业技能,这将帮助您在未来的学位水平研究中取得成功。在成功完成基础年度后,您可以保证您可以晋升为BSC(荣誉)生物医学学士学位的第一年。如果您有兴趣进入我们的其他健康科学学位之一,则将受这些课程可用的空间约束并满足相关的入学要求,其中可能包括通过面试。本课程涵盖了什么?生物医学科学包含一系列学科,包括临床生物化学,人分子遗传学,细胞生物学,感染和免疫,血液学和输血
纳米医学代表疾病管理中的革命前沿,利用纳米颗粒的独特特性来改变诊断,治疗和药物输送系统。本期特刊探讨了纳米技术的最先进进步,这些进步为各种医疗挑战提供了精确,有针对性和高效的解决方案。“纳米医学的创新用于疾病管理”,探讨了纳米医学在早期疾病检测,个性化医学和微创治疗中的应用。它涵盖了智能药物输送系统中的突破,优化了治疗结果,同时最大程度地减少了副作用。此外,该特刊强调了纳米技术与新兴领域(例如基因疗法,免疫疗法和再生医学)的整合,旨在强调纳米医学在增强患者护理和革新当代医疗保健实践方面的变革潜力。邀请研究人员和从业人员为这些开创性的研究做出贡献,为下一代疾病管理技术铺平了道路。
生物医学(ISSN 2227-9059)是一个开放访问期刊,该期刊致力于针对人类健康和疾病研究的各个方面,新的治疗靶标,治疗策略的发现和表征以及对自然驱动的生物医学,药物,药物和生物药物的研究。Topics include pathogenesis mechanisms of diseases, translational medical research, biomaterial in biomedical research, natural bioactive molecules, biologics, vaccines, gene therapies, cell-based therapies, targeted specific antibodies, recombinant therapeutic proteins, nanobiotechnology driven products, targeted therapy, bioimaging, biosensors, biomarkers, and生物仿制药。该期刊开放供基础科学和临床前研究级别进行的研究发表。我们邀请您考虑将您的工作提交生物医学,无论是原始研究,审查文章还是开发当前关键主题的特殊问题。
立体定向放射疗法越来越多地与免疫疗法或靶向疗法结合进行转移性癌症患者进行。与化学疗法相比,新的靶向药物和免疫疗法具有改善癌症生存的能力。但是,观察到许多患者将对他们的全身疗法产生耐药性,并出现寡聚疾病。这些病变经常通过立体定向放射疗法治疗,目的是通过刺激局灶性肿瘤组织损伤引起的抗肿瘤免疫作用来延长相同的全身疗法或克服耐药性。有趣的是,放射疗法与这些新药的结合可能会导致意外的严重毒性。本期特刊旨在讨论当立体定向放射疗法添加到现代靶向药物中时引起毒性增加或改善治疗反应的机制。它欢迎原始研究,并审查主要集中在两种治疗方法结合起来改善癌症患者治疗策略的结合所引起的体内机制。
近年来,需要使用便携式,可穿戴或可植入的电子设备来处理生物医学信号。这些功能由少量电池进行操作,因此能节能的ADC成为基本组件。生物传感器广泛用于葡萄糖监测,DNA测序,食物分析和微生物分析等应用中。其中一些生物剂翻译了一种生物学标记,该生物标志物的对数尺度(Thanachayanont,2015年)将其变化为curlant输出信号,因此,对数CDC是对他们来说更自然的读数设备。In addition, a log- arithmic ADC (Sit and Sarpeshkar, 2004) (Mahat- tanakul, 2005) (Rhew et al., 2014) (Sundarasaradula et al., 2016) (Danial et al., 2019) can perform analog- to-digital conversions with non-uniform quantization thus it can convert small signals with high resolu- tion and large signals with coarse resolution, which与线性ADC相比,启用处理大的输入动态范围信号的位。较低的位结果较低的功率和较小的区域。在这项研究中,我们提出了受基因网络启发的超低功率电子电路,以证明神经元网络的计算能力。这种方法取决于我们获得的洞察力,我们获得了将神经元网络映射到分子生物系统(生物形态(Rizik等,2022)(Daniel等,2013)),然后是电子ciTomorphic(Sarpeshkar,2011年(Sarpeshkar,2011)(Hanna等,
摘要在生物伦理学领域,科学文章已经发表,并强调了有关类器官的创建和使用的相对多元主义的反思。这种多数性,而不是简单地反映主题的复杂性,也可能是应用多个理论和实用框架的结果。此外,生物医学研究和医疗保健中器官的创建和使用可能还处于起步阶段。这种现象可能会增加幅度。生物伦理学可能能够为其提供有效且相关的道德含义,前提是并行形成了名副其实的伦理反射,即对生物伦理学本身的反思,以便为科学家和临床医生提供最佳的日常实践帮助。
类器官是三维细胞培养物,它们源自自组装干细胞以及模仿真实器官的结构和功能特征。他们提供了在体外环境中研究器官发育和发病机理的基本过程的可能性,并且是动物模型的高度有希望的替代方法。挑战其完整性以确定致病因素对组织和救援实验的影响的方法,最近开发了允许检查药物作用的实验。许多人体组织的类器官已经可用,但是生产技术却稳定地完善和优化。在本期特刊中,我们旨在介绍一系列文章,这些文章引入了新的和描述器官成像领域的既定发展。文章应强调各种类型器官的技术的优点,应用和局限性,并提供有关产生最佳结果所需的技术修改的有用信息。这将使读者能够理解整个成像方式,并选择最适合预期研究的方法。