2007年 - 生物力学和机器人期刊领域的当前评论:生物层依米氏智能技术;临床生物力学;医学中的计算和数学方法;计算机化的医学成像和图形;生物力学和生物医学工程的计算机方法;步态和姿势;应用生物力学杂志;生物力学杂志;运动工程与技术杂志神经工程与康复杂志;测量;骨科研究;存在
在生物相关基质(如血清或血浆)中表征药物-靶标相互作用的结合动力学的能力仍然是药物发现中的一个基本挑战。我们应用一种新型的基于标记的巨磁电阻 (GMR) 生物传感器平台来测量缓冲液和不同水平血清中药物-靶标对的蛋白质结合动力学和亲和力。具体来说,我们评估了三种成熟的免疫检查点抑制剂,即派姆单抗、纳武单抗和阿替利珠单抗,并将结果与无标记动力学平台进行比较:表面等离子体共振 (SPR) 和生物层干涉法 (BLI)。标记分析物不会影响它们与 GMR 生物传感器的结合和解离速率(开启和关闭速率),从而可以在生物相关基质中进行动力学测量。只有 GMR 生物传感器才适合持续测量高达 80% 血清中的结合动力学。在模拟三种免疫检查点抑制剂的药理性能时,应考虑其在血清存在下更快且不同的解离速率。
抽象的细胞绘画测定产生的形态学特征是生物系统的多功能描述,并已用于预测体外和体内药物效应。但是,从经典软件(例如Cell -Profiler)提取的细胞绘画特征基于统计计算,通常在生物学上不易解释。在这项研究中,我们提出了一个新的特征空间,我们称之为生物层,该空间通过综合细胞健康测定法的读数来绘制这些细胞涂料的绘制。我们验证了所得的生物形状空间有效地连接到与其生物活性相关的形态学特征,而且对与给定生物活性相关的表型特征和细胞过程有了更深入的了解。生物形状空间揭示了各个化合物的作用机理,包括双作用化合物,例如蛋白质,蛋白质合成和DNA复制的抑制剂。总体而言,生物形态空间提供了一种与生物学相关的方法来解释使用细胞式诸如CellProfiler等软件得出的细胞形态特征,并生成用于实验验证的假设。
C.胶囊D.分析71)花瓣的螺旋被称为b a. caryx B. Corolla C. androecium d. gynoecium 72)萼片的螺纹被称为A. calyx B. Corolla C. Corolla C. androecium androecium androecium androecium d. gynoecium d. gynoecium d. gynoecium d. gynoecium d. gynoecium 73)叶片上的叶子上的叶子上的叶子上的叶子laefax d。薄片被分割成多个平面,然后叶被称为b。简单的叶子B.复合叶C.片状叶D.泡菜叶75)组织的生物层是A. a。细菌B.地衣C.苔藓植物D.孢子菌76)光合色素吸收光能并将其转移到叶绿素的反应中心A:B A:B A.主要颜料B.配件色素C.水溶性色素D.三级色素77)厚壁静止的孢子称为:B a。
摘要:微流体生物传感器的主要问题之一是生物层沉积。典型的制造工艺,例如陶瓷的烧制和硅与玻璃的阳极键合,都涉及高温暴露,任何生物材料都很容易受到高温的影响。因此,目前的方法是基于液体沉积,例如化学浴沉积 (CBD) 和电沉积 (ED)。然而,这种方法并不适用于许多生物材料。通过使用等离子体处理引入陶瓷-聚合物键合,部分解决了这个问题。该方法在等离子体激活和用聚合物盖密封系统之间引入了大约 15 分钟的生物改性窗口。不幸的是,一些生化过程相当缓慢,这段时间不足以将生物材料正确附着到表面。因此,介绍了一种基于生物改性后等离子体激活的新方法。至关重要的是,放电是有选择性的;否则,它会蚀刻生物材料。通过使用等离子处理和与聚合物粘合进行选择性表面改性,可以克服制造陶瓷生物传感器的困难。通过接触角测量和傅里叶变换红外 (FTIR) 分析研究了等离子体改性的区域。为了证明这一概念,制造了一个样品结构。结果表明该方法是可行的。
维生素B6缺乏症已与人类脑疾病的认知障碍联系在一起数十年。仍然,将维生素B6与这些病理联系起来的分子机制仍然很少了解,并且补充维生素B6是否可以改善认知也不清楚。吡啶毒素磷酸酶(PDXP)是一种控制吡啶多毒素5'-磷酸盐水平(PLP)的酶,即维生素B6的共酶活性形式,可能代表一种替代性的治疗剂进入维生素B6相关病理学。但是,缺乏测试此概念的药理学PDXP抑制剂。现在,我们确定了鼠海马中PLP水平的PDXP和年龄依赖性下降,这为PDXP抑制剂的发展提供了理由。使用小分子筛选,蛋白质晶体学和生物层干涉法,我们发现,可视化和分析7,8-二羟基氟氟酮(7,8-DHF)作为直接且有效的PDXP抑制剂。7,8-DHF结合并可逆地抑制PDXP,其微摩尔亲和力和亚微摩尔效应。在小鼠海马神经元中,7,8-DHF以PDXP依赖性方式增加了PLP。这些发现将PDXP验证为可药的目标。值得注意的是,尽管对其作用机理进行了积极的争论,但7,8-DHF是脑部疾病模型中良好的分子。我们发现7,8-DHF作为PDXP抑制剂提供了有关围绕大脑7,8-DHF介导的作用的争议的新型机械见解。
癌症仍然是全球死亡的主要原因之一,预计约40%的人口将在其一生中接受癌症诊断1。常规治疗,例如手术,化学疗法和放疗对于改善患者预后至关重要。但是,这些方法通常缺乏特异性,部分原因是患者之间和内部肿瘤的固有异质性。精确药物已经通过开发针对肿瘤的特定分子和遗传特征量身定制的疗法来应对这些挑战。有针对性的疗法,尤其是单克隆抗体,在该领域表现出了很大的希望,但是这些疗法面临诸如毒性,组织渗透不良和高生产成本等局限性。本论文的重点是创新前药策略的发展,包括基于Affibody的前药和具有affibody掩盖域的抗体前药,旨在增强组织选择性并降低癌症治疗中的全身毒性。此外,还探索了用于肿瘤相关蛋白酶的底物工程以优化前药激活。通过五篇研究论文,研究了这些策略,以提高下一代癌症治疗剂的潜力。在论文I中,使用肉桂葡萄球菌显示出了表皮生长因子受体(EGFR) - 靶向抗体的掩模域。这项研究筛选了一个Affibody库,以隔离能够有效掩盖EGFR结合活动的域。在论文II中,最初的基于Affibodo的前药进一步优化以改善其体内生物分布。概念验证前药证明,掩盖域可以抑制EGFR结合,并在蛋白水解裂解时恢复活性。关键修改包括引入合适的肿瘤蛋白酶底物和高亲和力的白蛋白结合结构域以延长血液循环时间。优化的前药在肿瘤异种移植小鼠中表现出良好的生物分布,在健康组织中的摄取幅度大大降低,显示体内肿瘤选择性的显着提高。在论文III中,探索了抗eGFR单克隆抗体西妥昔单抗的掩蔽域。使用大肠杆菌显示,选择了affibodies以特异性结合和掩盖cetuximab的寄生虫。西妥昔单抗前药是用affibody掩盖结构域设计的,体外研究表明,西替昔昔单抗的生长抑制作用降低了400倍,直到蛋白水解活化为止。这项研究验证了基于抗体的前药中阿喂掩模域的使用。纸IV旨在通过隔离能够掩盖Nivolumab(一种抗PD-1单克隆抗体)来证明大肠杆菌显示平台的多功能性。筛选鉴定出似乎模仿PD-1并阻止Nivolumab的结合能力的非惯性抗辩分子。结构建模和生物层干涉法证实了裂解时PD-1结合的有效掩盖和恢复,这表明可能会改善免疫检查点抑制,并减少全身性副作用。
在生物技术中,批处理培养物涉及在开始时将所有培养基组件放在反应堆中,除了大气气体和其他控制剂。这会随着时间的推移而创建一个不稳定的系统,而营养浓度不断变化。饲料批量文化通过无菌添加营养来修改这种修改,从而创建一个半开放的系统,其中液体培养体积随系统添加而增加。这种方法提高了生产率,产生更好的结果并允许更高的细胞密度。连续培养是一个连续的过程,在该过程中,添加营养并同时去除培养汤,由于平衡的进料和进料速率而保持恒定体积。比较这些方法揭示了关键差异:批处理文化使用封闭的系统,一开始就提供了所有营养,而Fed Batch则使用具有系统添加的半关闭系统。连续培养在开放系统中运行,并具有连续的营养添加和去除。过程的持续时间也有所不同,当产品形成时,批处理和批量停止,而连续文化通过不断删除产品来保持生产。微生物在每种方法中都经历不同的阶段:批处理和饲料批次经历滞后,原木,固定和死亡阶段,而连续培养物将微生物保持在滞后和对数阶段。这些方法之间的内部环境和养分量也有所不同,批处理具有不稳定的环境和恒定的营养量,饲料批量保持恒定的环境,养分量增加,并且连续培养保持环境和营养量稳定。4。•发酵过程在开始时将环境从外部转变为内部。•营养水平和条件会影响微生物的周转率,这在两者都保持良好时是最佳的。•控制微生物生长和所需产品在发酵过程中有所不同。•批处理培养物利用大型发酵罐,而饲料群则使用小型发酵罐,并且连续培养物使用小型发酵罐。•建立批处理文化很简单,而建立饲料批次或连续文化则需要更多的复杂性和精力。•产品的产量在发酵类型上有所不同,在某些过程中看到了高收率。•劳动需求根据发酵的类型而有所不同,其中一些人需要比其他人少的劳动力。•投资要求也有所不同,某些流程需要比其他流程更高的投资。•控制方法可以简单,快速或复杂,并且取决于所使用的发酵技术。•发酵主要用于生产二级产品,例如抗生素和重组蛋白。•最终产品是通过下游处理步骤获得的。综合生物技术(2017)Yang&Sha,“生物处理模式的初学者指南,美联储批次和连续发酵” doi:10.1016/b978-08-08-0888504-9.00112-4。本文概述了Fed Batch反应堆培养物,这是一种生物技术过程,在培养过程中,将一种或多种营养素喂给生物反应器,从而可以控制底物浓度。这种现象称为分解代谢物抑制。在控制营养水平会影响产品产量或生产力的情况下,该技术很有用。饲喂群培养特别有效。这些酸的形成称为细菌crabtree效应。分解代谢物抑制在微生物中提供了易于代谢能源(如葡萄糖)时,ATP浓度的增加会导致抑制酶的生物合成,从而导致能源源代谢较慢。许多参与分解代谢途径的酶都受到这种调节的约束。一种克服分解代谢物抑制的方法是饲喂群培养物,在该培养物中,葡萄糖浓度保持较低并受到生长的限制,从而使酶生物合成消除。青霉子素的青霉素发酵就是一个例子。5。使用需要特定养分的可营养性突变体在微生物过程中的,多余的养分供应会促进细胞的生长,但由于反馈抑制和终产产物抑制而抑制了代谢物的积累。 所需养分的饥饿减缓了细胞的生长和产生。 通过在有限的养分量上种植突变体,可以最大化所需的代谢物积累。 该技术用于工业氨基酸的生产,例如赖氨酸生产羟基氨基或苏氨酸/蛋氨酸/蛋氨酸的谷胱甘肽谷氨酰胺突变体。 6。 指定的化合物在培养液体中的存在形成共抑制剂,当其浓度保持较低时,允许持续的基因表达。 7。,多余的养分供应会促进细胞的生长,但由于反馈抑制和终产产物抑制而抑制了代谢物的积累。所需养分的饥饿减缓了细胞的生长和产生。 通过在有限的养分量上种植突变体,可以最大化所需的代谢物积累。 该技术用于工业氨基酸的生产,例如赖氨酸生产羟基氨基或苏氨酸/蛋氨酸/蛋氨酸的谷胱甘肽谷氨酰胺突变体。 6。 指定的化合物在培养液体中的存在形成共抑制剂,当其浓度保持较低时,允许持续的基因表达。 7。所需养分的饥饿减缓了细胞的生长和产生。通过在有限的养分量上种植突变体,可以最大化所需的代谢物积累。该技术用于工业氨基酸的生产,例如赖氨酸生产羟基氨基或苏氨酸/蛋氨酸/蛋氨酸的谷胱甘肽谷氨酰胺突变体。6。指定的化合物在培养液体中的存在形成共抑制剂,当其浓度保持较低时,允许持续的基因表达。7。用抑制启动子对基因的表达控制抑制启动子的基因的转录被DNA上的全抑制剂和操作员区域的组合抑制。美联储文化允许这样做。示例包括TRP启动子和Phoa启动子。延长运营时间,补充水分流失和降低培养汤粘度粘度的饲料批次策略用于工业生物过程中,以达到高细胞密度。通常,饲料溶液高度浓缩以避免生物反应器稀释。蛋白质已广泛研究其生长模式和局限性。该方法涉及以精确的速度将营养直接添加到培养物中,这有助于防止形成不良的副产品和氧气稀缺。该技术对于维持微生物繁殖的稳定环境至关重要。一种类型的Fed批次培养物,称为不断喂养的批量培养(CFBC),涉及在整个过程中以恒定的速率喂养限制生长的底物。该方法在数学上和实验上都得到了良好的建立,并且可以适用于固定容量或可变体积系统。在理想的情况下,细胞成倍地生长,通过按照这种生长成比例调整进料速率,可以维持细胞的特定生长速度,同时保持底物浓度恒定。这种方法允许对反应速率进行更多控制,并防止技术局限性,例如反应堆或氧转移困难中的冷却问题。指数填充的批量培养(EFBC)是另一种变化,涉及随着时间的时间呈指数增长的饲料率,以匹配细胞的指数生长速率。此外,它提供了代谢控制,以防止渗透作用,分解代谢产物抑制和形成不良的副产品。可以采用不同的策略来控制喂养过程中的生长,包括控制参数,例如氧气水平,葡萄糖浓度,pH,氨水水平和温度。这些方法对于维持微生物产生所需蛋白质的最佳条件至关重要,同时最大程度地减少了不需要的副产品的产生。大肠杆菌高细胞密度的生物层化方法