我们很高兴介绍本期特刊,《生物工程中的人工智能:医学机器人技术,成像和个性化疗法》的开创性进步,在人工智能(AI)和生物工程交叉的相交中的开拓性研究集合。此问题强调了医学机器人技术,成像技术和个性化治疗学的变革性进步,这些进步正在塑造医疗保健的未来。AI驱动的创新正在推进精确医学,并实现了新颖的诊断和治疗方法。例如,谢赫(Sheikh)和吉尔万卡(Jirvankar)的研究[1]探讨了AI在纳米颗粒设计中的应用,以进行精确肿瘤学,并为癌症治疗的新领域提供了新的领域。同样,Hamad,Khoshnaw和Shahzad [2]的研究采用了弹性和敏感性技术来对HIV感染性疾病进行建模,从而强调了AI在复杂疾病建模中的实用性。在计算生物学领域,Sridhar [3]将分叉分析与最佳控制策略相结合,以解决分子网络,证明了AI应用的跨学科性质。此外,Camacho Carlos等人说明了医学机器人技术的进步。[4],他开发了一种用于人类活动识别的2D CNN-LSTM方法,展示了在医疗康复和机器人技术中的顺序图像处理的力量。总而言之,这些贡献体现了本期特刊的核心主题,从创新计算策略到在个性化医学和道德考虑中应用AI。此外,此外,Hajare,Rewatkar和Reddy的研究进一步说明了AI在增强诊断能力方面的作用[5],该研究提出了一个可解释的AI(XAI)框架,用于早期预测急性冠状动脉综合征的早期预测,从而取消了基于AI的诊断术中透视和解释能力的重要性。我们作者的合作不仅解决了当前的挑战,而且还解决了生物工程发展的未来进步的道路。
chbe 855-计算分子生物工程学分:4生物工程中的基本概念简介,主要强调与分子建模,仿真和可视化技术集成的生物分子结构的细节。The course will introduce structural details of various biomolecules (proteins, nucleic-acids, sugars, and lipids), followed by concepts in thermodynamics and physical chemistry (such as intermolecular forces, energy, entropy, chemical potential, and Boltzmann's distribution), the applications of which will be discussed in the context of drug-receptor interactions, molecular recognition, biomolecular folding,酶催化,变构通信,扩散和运输。实验室将包括培训和了解高级模拟和可视化软件引擎。同等学历:Beng 855年级模式:字母分级
2023 年 9 月 20 日——分子自组装的驱动力。大分子的结合协同性、溶剂化、滴定。M. Birnbaum、C. Voigt。生物工程...
SIMR 生物工程团队实习是针对高中生的生物工程实践设计体验。学生通过讲座参加有关各种生物工程研究主题的讲座,并每周 3 天(周三/周四/周五;上午 9 点至下午 4 点)从事一个解决医疗需求的真实生物设计项目。生物工程实习的暂定日期为 2025 年 6 月 9 日至 7 月 31 日。4-5 人团队的学生将在开发解决方案、评估技术优缺点、构建原型和测试其创作的某些方面时练习自己的工程和批判性思维技能。由本科生和研究生组成的教学团队教授设计过程、招募演讲者、提供指导并为学生举办设计评审。在课程结束时,学生团队将在课程结束时的 SIMR 海报会议上展示他们的原型。
摘要令人兴奋的心脏,神经和骨骼肌肉组织的固有复杂性在构建人工对应物方面构成了巨大的挑战,这些对应物与它们的自然生物电气,结构和机械性能非常相似。最近的进步越来越多地揭示了生物电微环境对细胞行为,组织再生和可激发组织的治疗功效的有益影响。本综述旨在揭示电气微环境增强可激发细胞和组织的再生和功能的机制,考虑到来自电活性生物材料的内源性电线以及来自外部电子系统的外源性电刺激。我们探讨了这些电气微环境的协同作用,并结合结构和机械指导,对使用组织工程的可激发组织的再生
入围候选人的第一轮访谈仅在2024年11月12日至24日之间以虚拟模式举行[入围候选人的访谈时间表将在2024年11月11日之前分享]。第二轮入围的候选人必须在2024年12月进行面对面的访谈。
Bionanotechnology课程与基本和应用的研究计划有关,旨在理解纳米级基本现象以及纳米技术在生物工程,生物学,应用物理学,应用物理学,物质科学和生活科学以及新技术和新技术的发展中的应用,以及在新的技术中的发展。bionanotechnologies具有广泛的吸引力,即:从细胞到芯片和芯片到细胞技术,再到纳米式传感器,从纳米诊断到先进的光学表征和成像工具,从智能药物递送到智能药物递送,从功能性的纳米可塑性组织到智能材料。除其他外,研究的发展包括开发新的可持续材料和包装和电子产品的方法,以及实施新的显微镜技术来研究纳米级的生活。也是,大多数应用程序都是从IIT域(机器人技术,纳米材料,Lifetech,计算科学)开始的,包括技术传输观点。候选人将沉浸在科学技术的前沿。国际申请人受到鼓励,并将获得有关签证问题,搬迁等的后勤支持。
植物 - 微生物相互作用的领域正在迅速发展,随着生物技术和生物工程的进步,我们正处于释放农业,环境可持续性和健康科学方面的新机会。微生物生物技术与植物系统的整合具有革新作物生产力,营养效率,病原体抗性和气候弹性的潜力。随着研究的继续,生物技术干预措施是针对全球挑战的创新解决方案,例如粮食安全,生态系统退化和可持续的能源生产。本社论探讨了植物 - 微生物生物技术的最新进步,重点是农业中的微生物应用,生物工程突破以及这种动态场的未来轨迹。微生物群落对于植物健康和发育至关重要,并与根际中的植物根相互作用,以促进营养摄取,增强胁迫耐受性并预防病原体。有益的植物相关微生物,例如磷酸盐溶解的微生物(PSM)和氮固定细菌,正在越来越多地探索以减少对化学肥料的依赖并促进可持续的农业(Jain等人。; Pang等。)。磷是植物生长的关键元素,但是由于它倾向于与钙,铁或铝形成不溶性化合物,因此在土壤中通常无法使用。psms通过分泌溶解这些结合化合物的有机酸来增强磷的可用性,从而使磷可供植物进入(Pang等人。)。)。)。芽孢杆菌,假单胞菌和曲霉物种可以显着增加磷的摄取并改善植物的生长和产量(Jain等人。共生细菌,例如根瘤菌,勃arad骨和硫唑群,通过将大气氮转化为氨可以使用,在氮固定中起着至关重要的作用,植物可以使用。这种自然过程减少了对合成氮肥的需求,从而促进了农业和环境可持续性(Pang等人。将这种微生物功能整合到农业系统中可以提高作物产量,减少化学投入并发展弹性的农业系统。