f eb 16:5.30 pm - 7.30 pm | d Inner&p anel主题演讲:为医疗保健和生物医学翻译AI f eb 17:11 am - 1 pm - 1 pm | l uncheon&p anel where:e ngenering p rogic @ missouri s tate u niversity s tate u niversity; 405 N J Efferson A v。s Pringfield,M O E-F Actory,市区校园(停车位于406 N. B Oonville A Ve。)
认识到生物工程中的追求多样性,该计划提供了核心课程,对生物工程的中心以及代表当今生物工程的关键现代分区的一系列专业课程。该计划设想强大与行业联系。该课程是通过行业利益相关者的投入和反馈设计的。在整个计划中,参与了该行业的同事的参与。此外,还提出了沟通,管理和企业家精神的培训,这将使毕业生非常适合行业的职位。
部门/中心/学校的名称:生物科学与生物工程学科主题法:BEC-191课程标题:技术沟通L-T-P:2-0-0学分:2学科领域:PCC课程大纲:科学/技术交流原理;有关主题,偏见和所需效果的信息和来源的文献调查;以非数字和数字方式有效沟通;文档设计原理和编写书面文档和数字文档中的适当技术;有效利用图表,图形和表,以专业的方式进行有效的电源点幻灯片;回答问题,论证技巧,凝聚力和重点,批判性思维,能力;在说话之前先思考:避免陷阱;对同行反馈进行修订和编辑口头演示。
微藻作为光合生物,有可能生产用于食品,饲料,化妆品,营养素,燃料和其他应用的生物分子。更快的增长率以及更高的蛋白质和脂质含量使微藻成为许多工业应用的流行底盘。但是,诸如低生产率和高生产成本之类的挑战限制了其商业化。为了克服这些挑战,已经采用了生物工程方法,例如基因工程,代谢工程和合成生物学,以提高基于微藻的产品的生产率和质量。采用基因组编辑工具(例如CRISPR/CAS)的基因工程允许精确且有针对性的遗传修饰。CRISPR/CAS系统目前用于修改微藻的遗传组成,以增强特定生物分子的产生。但是,由于某些局限性,这些工具尚未在微藻中明确探索。尽管基于CRISPR的生物工程方法取得了进展,但仍然需要进一步研究以优化基于微藻的产品的生产。这包括提高基因组编辑工具的效率,了解微藻代谢的调节机制以及优化生长条件和培养策略。此外,解决与微藻的遗传修饰有关的道德,社会和环境问题对于基于微藻的产品的负责发展和商业化至关重要。审查将帮助研究人员了解进度并启动微藻中的基因组编辑实验。本评论总结了基于CRISPR的生物工程的进步,用于生产具有工业重要的生物分子的生产,并提供了在微藻中使用CRISPR/CAS系统的关键注意事项。
标题为“疾病的传播,通过植物组织培养物质的自由品种,通过植物组织培养物,以增强当地农民的生计”,位于勒克瑙的Biotech Park,UP。在利伯尼兹研究所的植物生殖生物学小组
第1章简介欢迎!本手册旨在概述佐治亚理工学院跨学科生物工程研究生计划(IBGP)的学生的政策,程序和学位要求。虽然本手册旨在回答有关计划政策和学位要求的大多数问题,但本手册中总会有某些情况可能没有明确涵盖。有关该程序的信息也可在IBGP网站上获得,位于http://www.bioengineering.gatech.edu/当似乎存在相互交流的信息时,该手册被认为比网站优先。请将所有问题引向IBGP Ofifece(计划管理中描述)。请注意:所有学术形式 - 学习计划,论文委员会,主题批准,候选和论文的完成必须被打字 - 也不例外。
硝基固醇是一种微生物生物刺激剂,含有活性形式(1 x 10月CFU)的氮固定细菌群落,具有穿透植物叶子并产生菌落的能力。这些细菌通过不断,始终如一地以直接同化的形式从大气中提供氮刺激植物的生长,并产生植物(Auxins等)),可确保快速,剧烈和平衡的生长以及收获的定量和定性特征的令人印象深刻的改善,同时降低氮肥,这反复证明是一项长期的实验性研究,在不同的作物和多样化的土壤和多样性的土壤中。