•Curto,D。,Franzitta,V。和Guercio,A。(2021)“对水生气技术的评论”,应用科学,11(2),p。 670。可用:https://doi.org/10.3390/App11020670。•Michalak,A.M。等。 (2023)“水与卫生的边界”,自然水,1(1),pp。 10–18。 可用:https://doi.org/10.1038/s44221-022-00020-1•Mpala J.,T。等。 (2023)“膜蒸馏中的生物污染现象:机制和缓解策略”,环境科学:进步,2(1),pp。 39–54。 可用:https://doi.org/10.1039/d2va00161f。 •Rosińska,W。等。 (2024)‘气候变化对供水系统和水能Nexus的连锁反应 - 审查”,《水资源与工业》,第32页,第32页。 100266。 可用:https://doi.org/10.1016/j.wri.2024.100266。 •Shah,M.P。 (ed。) (2024)废水处理的生物电化学氧化过程。 Boca Raton:CRC出版社。 可用:https://doi.org/10.1201/9781003368472。•Michalak,A.M。等。(2023)“水与卫生的边界”,自然水,1(1),pp。10–18。可用:https://doi.org/10.1038/s44221-022-00020-1•Mpala J.,T。等。(2023)“膜蒸馏中的生物污染现象:机制和缓解策略”,环境科学:进步,2(1),pp。39–54。可用:https://doi.org/10.1039/d2va00161f。•Rosińska,W。等。(2024)‘气候变化对供水系统和水能Nexus的连锁反应 - 审查”,《水资源与工业》,第32页,第32页。 100266。可用:https://doi.org/10.1016/j.wri.2024.100266。•Shah,M.P。(ed。)(2024)废水处理的生物电化学氧化过程。Boca Raton:CRC出版社。可用:https://doi.org/10.1201/9781003368472。
通常挑战芳香碳氢化合物和氯化溶剂的混合物污染的地下水的生物修复,因为这些污染物通过独特的氧化和还原途径降解,因此需要不同的修订和氧化还原条件。在这里,我们提供了含有甲苯和三氯乙烯(TCE)的单阶段处理的概念证明,在管状生物电化学反应器中,称为“生物电井”。甲苯用微生物生物射模(最高150 m mol 1 d 1)降解,其用作末端电子受体,其偏光石墨阳极(þ0.2V vs. she)降解。从微生物驱动的甲苯氧化中衍生的电流导致(在不锈钢阴极处)产生(不锈钢阴极),这使TCE降低了TCE的氯化为氯的中间体(即CIS -DCE,VC和ETH),以500 m eq l 1 d 1 d 1 d 1 d 1 d 1 d 1 D.基于“生物电井”的系统发育和功能基因分析确认了具有厌氧甲苯氧化和TCE还原性脱氯代谢潜力的微生物组的建立。然而,甲苯降解和当前产生是由外部质量运输定位限制的,因此表明现有的进一步过程优化潜力。©2022作者。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
Altair Feko 的主要应用 对于无线系统、EMC 和雷达应用,Altair Feko 提供了一套全面的解决方案,包括:• 天线设计和大型平台上已安装天线性能的分析 • 平台连接的虚拟试驾和虚拟飞行测试 • 雷达截面和散射分析 • 电磁兼容性 • 无线电和雷达覆盖和规划 • 射频干扰和频谱管理 • 辐射危害和生物电磁场景分析 • 复杂雷达罩的电磁模拟和分析
无线血管内神经刺激用毫米大小的磁电植入物Joshua C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. C. 2,Zhanghao Yu* 3,Fatima Alrashdan 3,Roberto Garcia 2Edwin Lai 1,Ben Avants 3,Scott Crosby 5,Michelle M. Felicella 6,Ariadna Robledo 2,Jeffrey D. Hartgerink 1,7,Sunil A. Sheth ** 8,Kaiyuan Yang ** 3,雅各布·T·罗宾逊(Jacob T. Robinson)美国德克萨斯州加尔维斯顿市德克萨斯大学医学分公司神经外科3号电气与计算机工程系,赖斯大学,美国德克萨斯州休斯敦市,美国4号应用物理学计划,赖斯大学,德克萨斯州休斯敦,美国5 NeuroMonitoring Associates,LLC 6. LLC 6年病理学系6.美国德克萨斯州休斯敦市Uthealth McGovern医学院9.美国德克萨斯州休斯顿市贝勒医学院神经科学系 *联合首先作者:J.C.C.,P.K.,P.K.,Z.Y。; **相应的作者:J.T.R,K.Y。S.A.S. 抽象植入的生物电子设备有可能治疗对传统具有抗性的疾病S.A.S.抽象植入的生物电子设备有可能治疗对传统
持续多通道监测生物电信号对于了解整个身体至关重要,有助于在神经研究中建立准确的模型和预测。目前最先进的无线生物电记录技术依赖于辐射电磁 (EM) 场。在这种传输中,由于 EM 场辐射范围很广,因此只能接收到一小部分能量,从而导致系统有损、效率低下。使用身体作为通信介质(类似于“电线”)可以将能量限制在体内,从而比辐射 EM 通信的损耗低几个数量级。在这项工作中,我们引入了动物身体通信 (ABC),它将使用身体作为介质的概念应用于慢性动物生物电记录领域。这项工作首次开发了动物身体通信电路和通道损耗的理论和模型。利用该理论模型,使用现成的组件构建了一个亚英寸 3 的定制传感器节点,该节点能够通过大鼠的身体感应和传输生物电位信号,与传统无线传输相比,其功率明显较低。体内实验分析证明,与传统无线通信方式相比,ABC 成功地通过身体传输了采集的心电图 (EKG) 信号,相关精度 >99%,功耗降低了 50 倍。
目的:这项研究的主要目的是研究色氨酸对高热量饮食(HCD)引起的肝脏的组织和生化异常的保护作用,以及其能够使线粒体功能归一化的能力,以防止非含酒精含量的Fatty liver病的发展(Nafty)。方法:该研究是在实验开始时在3个月的男性Wistar大鼠中进行的。对照动物(I组)喂养标准饮食。II组实验动物的饮食饮食过量(45%)和碳水化合物(31%),持续12周。III组实验动物还以80 mg/kg体重的L-Tryptophan除HCD外接受了L-Tryptophan。使用生理,形态学,组织形态,生化和生物物理研究方法评估了NAFLD,功能活性,生理再生以及肝实质和结缔组织状态的存在。结果:HCD诱导NAFLD的发展,其特征是肝脏体重的增加,肝细胞肥大以及脂质,胆固醇和甘油三酸酯在肝组织中的浓度升高。肥胖大鼠肝脏中丙氨酸氨基转移酶活性的增加也证实了肝细胞损伤。色氨酸添加到饮食中,通过减少脂肪的积累和侵犯生物电特性的侵害,降低了NAFLD的严重程度,并防止了线粒体ATP合成的降低。结论:添加色氨酸可以对肝脏产生潜在的积极影响,从而降低了由HCD引起的结构,生化,线粒体和生物电损害的严重程度。关键字:脂肪肝病,必需氨基酸,肥胖
摘要 - 该项目具有客观地识别使用传感器“情感EEG Neuroset”的一些面部表情。此设备是一种能够通过脑电图技术(EEG)接收和解释大脑生物电活动的传感器,此外,还具有16个通道,并连续准确接受脑电波。此外,传感器具有易于使用的SDK,即使没有任何大脑信号获取经验,任何人即使没有任何经验。Emotiv®数据被转移到MATLAB®进行过滤脑电波,以通过串行通信向Arduino发送信息。因此,在Arduino板上获得了三种不同表达式的识别,即眨眼,眨眼和微笑,每个表达式在Arduino板上都有不同的LED颜色。
如今,人们对微生物燃料电池产生了浓厚的兴趣,因为其中可以使用不同的基质来产生电能。为了找到替代品并贡献环保技术,本研究通过实验室规模的微生物燃料电池,使用沙雷氏菌和红酵母作为燃料源。制造了一个带有空气阴极的单室微生物燃料电池,以铜箔和石墨板分别作为阳极和阴极电极。为了表征电池,在室温(18±2.2 ◦C)下测量了 30 天的电压、电流、pH 值和电导率等物理化学参数。对于含有细菌和酵母的 MFC,可以产生峰值电压和电流值 0.53±0.01 V 和 0.55±0.02 V,电流值 1.76±0.16 mA 和 1.52±0.02 mA。此外,观察到酸性操作 pH 值,其电导率峰值约为 242 mS/cm。最后,这项工作证明了微生物在产生电流方面具有巨大的潜力,为发电提供了一种新的、有前途的方法© 2023 秘鲁自治大学。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
本课程旨在帮助学生思考和欣赏自然界中无数的生物电现象。这包括动物、植物和多种生物材料中的生物电信号。这些不仅对系统的生理功能很重要,而且为开发用于可持续发展的新型传感器、执行器、能量收集平台提供了巨大的灵感。本课程的重点是强调“我们如何记录来自各种样本的电信号,分析它们,并以创新的方式思考如何将它们用于能量收集和其他生物工程应用。本课程的最终目标是让学生能够利用他们的概念理解来开发可持续技术。