过敏性鼻炎(AR)的特征是过敏原特异性介导的上呼吸道炎症性炎症性炎症,全球流行率高达30%(Meltzer,2016年)。除了避免过敏原的标准外,过敏原免疫疗法(AIT)旨在诱导特定的过敏原免疫耐受性,从而达到临床症状缓解的状态。特定的未修饰或化学修饰过敏原(过敏反应)的可重复摄入量是保持症状的关键。在AIT的这些方法中,皮下免疫疗法(SCIT),舌下免疫疗法(SLIT)和淋巴免疫疗法(LIT)被证明是有关效率,安全性和副作用的主流治疗方法。与缝隙相比,SCIT是一种临床依赖性治疗方法,患者皮下接受过敏原提取物注射。它分为初始治疗阶段(剂量积累阶段)和维持治疗阶段(剂量维持阶段)。世界过敏组织(WAO)建议将免疫疗法维持三到5年,并在临床上至少推荐2年。患者的依从性是确保持久效率和维持症状缓解作用的关键因素。由于SCIT的持续时间,繁琐的过程,缓慢发作,治疗效果的个体差异以及其他因素从根本上影响治疗剂的完整性,因此。 根据AIT的研究,依从性率从约25%到90%以上(Passalacqua等,2013)。。根据AIT的研究,依从性率从约25%到90%以上(Passalacqua等,2013)。根据AIT的研究,依从性率从约25%到90%以上(Passalacqua等,2013)。世界卫生组织(WHO)采用了“坚持”定义为“一个人的行为,例如服药,饮食或执行生活方式的改变,与医疗保健提供者的同意建议相对应”(Eduardo,2003年)。在最近的欧洲过敏和临床免疫学学院(EAACI)指南中,强调了对患者进行免疫疗法的工作原理以及解释遵守常规剂量3年治疗的重要性的教育(Roberts等人,2018年)。通过系统和技术干预措施,将多种方法引入了改善依从性和监督患者结局的领域,以防止对治疗的不完整中断。诊所的干预措施提前在整个治疗周期中进行了批准,作为一种有效的方法。在面对来自患者的大量个性化数据时,如何精确识别和评估即将到来的非依从性行为的风险,在应用程序中有望有一个临床预测模型。在医疗保健中,机器学习,尤其是顺序模型,位于创新的最前沿,提供了分析复杂医疗数据并改善患者治疗的新方法。先前的研究主要集中在依从性的非序列预测方法上(Ruff等,2019; Wang等,2020; Mousavi等,2022; Warren等,2022)。这种方法在治疗过程中提出了一个显着的限制,特别是对于经常跨越长时间(例如3年)的免疫疗法。这些非序列方法倾向于仅预测整体结果,从而忽略了中间时间步骤的复杂性。促进早期干预措施,一个顺序模型,能够在任何给定时间进行预测
作者:J Li · 2021 · 被引用 5 次 — 第二军医大学,上海,中华人民共和国。中国。3宁夏药学院药物化学系。医科大学...
糖尿病和肥胖症是世界卫生组织宣布为流行病的代谢合并症。由于植物衍生的次级代谢产物据称具有药用活性,我们利用体外实验和分子对接评估了菲律宾本土植物 Phaeanthus ophthalmicus 四氢双苄基异喹啉生物碱成分粉防己碱 ( 1 ) 和利马库斯碱 ( 2 ) 对与 2 型糖尿病 (T2D) 和肥胖有关的酶(如 α-葡萄糖苷酶、二肽基肽酶-IV (DPP-IV)、猪胰脂肪酶 (PPL) 和人单酰甘油脂肪酶 (MAGL))的抑制潜力。与对照药物阿卡波糖 (IC50 = 4.12 μg/ml) 相比,生物碱 1 (IC50 = 2.29 μg/ml) 和 2 (IC50 = 2.68 μg/ml) 均表现出更强的 α-葡萄糖苷酶抑制作用。与对照药物西他列汀 (IC50 = 6.90 μg/ml) 相比,生物碱 1 (IC50 = 4.92 μg/ml) 和 2 (IC50 = 3.80 μg/ml) 也表现出更好的 DPP-IV 抑制活性。分子对接结果显示,与各自的对照药物相比,1 和 2 与 α-葡萄糖苷酶和 DPP-IV 活性位点的结合倾向更好。同时,与奥利司他相比,生物碱 2 表现出比 PPL 更好的体外 (IC 50 = 0.70 μg/ml) 和计算机模拟抑制活性。生物碱 1 和 2 均表现出对 MAGL 的中等生物活性。预测这两种生物碱都具有药物相似性。我们目前的研究表明,来自 P. ophthalmicus 的四氢双苄基异喹啉生物碱植物成分粉防己碱 ( 1 ) 和利马库斯碱 ( 2 ) 在开发新一代抗 2 型糖尿病和肥胖症前体药物方面具有潜力。
摘要:技术进步显示了包括阿尔茨海默氏症,帕金森氏症和亨廷顿在内的神经退行性疾病中的渐进性神经元丧失,认知和运动功能,这些疾病包括阿尔茨海默氏症,帕金森氏症和亨廷顿的疾病,这些疾病有助于人们生活中最残疾的状况。当前的疗法仅针对疾病的表现迹象,而不是根本原因,并且在研究了30多年之后。要满足这种治疗需求,需要解决这些疾病的复杂病理的创新疗法。在寻找用于治疗神经退行性疾病的新药物的另一种有希望的方法:植物起源的生物碱,这种生物碱不足作为化学家。在称为生物碱的天然氮化合物中,人们检测到适合神经保护性的一系列药理作用,最需要。huperzine a - 源自番茄种类,是一种神经药物,是一种乙酰胆碱酯酶,而源自汞曲科植物的甘氨酸通过修饰胆碱能系统的治疗彻底改变了阿尔茨海默氏病的治疗。berberine是一种天然存在的生物碱,是植物berberis物种和利比丁(Recerpine),一种来自Rauwolfia物种的生物碱,已被证明是在PD管理中具有潜在的治疗用途,因为Ber和Res具有抗氧化剂,抗炎,抗炎和抗抑制性和抗多巴胺能在实验性模型中。最近的研究表明,由于它们能够停止蛋白质聚类的能力,因此可以学习生物碱如何帮助保护和预防神经退行性疾病。这些只是为了使这些化合物具有奇迹般的自然活性在诊所中的奇迹活动,包括可伸缩性,生物利用度和药代动力学的问题。合成生物学,纳米技术和人工智能的进步可能会改变生物碱的治疗适用性。在这篇综述中,涵盖了从植物中提取的生物碱的临床应用和含义的讨论,以及用于药用目的的临床应用以及涉及的动作机制和潜在的未来应用。生物碱将土著智慧与现代科学研究融为一体,它发掘了解决方案,如果实现的话,它将保持终止神经变性的前景。
来自Mitragyna Speciosa(MIAS)(MIAS)(MIAS)(“ Kratom”)(例如Mitragynine和Speciogynine)是阿片类药物受体配体的新型脚手架,用于治疗疼痛,成瘾和抑郁症。虽然在东南亚用作刺激性和疼痛管理物质已有数百年的历史,但这些精神活性的生物合成途径直到最近才被部分阐明。在这里,我们通过重建了来自普通MIA前体的五步合成途径,从而证明了酿酒酵母中的mitragynine和speciogynine,该途径由普通MIA PRECURSOR严格sillitersitor构成带有真菌性比喻的4-偶生酶,以绕过一个不知名的kratom kratom hydroxylase sydroxylase。在优化培养条件下,从葡萄糖中获得了〜290 µg/l kratom mias的滴度。铅生产菌株的无靶向代谢组学分析导致鉴定出众多的分流产物,这些分流产物是由严格os子氨酸合酶(Str)和二氢核南氨酸合酶(DCS)的活性得出的,突显了它们作为酶工程的候选物,以进一步改善kratom mias Mias在YEAST中的生产。最后,通过喂养氟化的色胺并表达人类的裁缝酶,我们进一步证明了氟化和羟基化的Mitragynine衍生物的产生,并在药物发现运动中可能采用潜在的应用。总的来说,这项研究引入了一个酵母细胞工厂平台,用于具有具有治疗潜力的复杂天然和新型Kratom MIAS衍生物的生物制造。
甾体糖苷生物碱 (SGA) 通常存在于茄属植物中,是番茄 (Solanum lycopersicum)、马铃薯 (Solanum tuberosum) 和茄子 (Solanum melongena) 等茄属粮食作物 (Harrison 1990; Helmut 1998; Petersen et al. 1993) 中的已知有毒物质(图 1)。由于 SGA 对真菌、细菌、昆虫和动物具有毒性,因此被认为在抵御多种病原体和捕食者方面发挥着防御作用(Friedman 2002、2006)。土豆是全球第四大重要作物,然而,土豆含有有毒的 SGA,例如 α-茄碱和 α-卡茄碱。 SGA 主要存在于芽菜和绿色马铃薯中(特别是靠近皮的部分),如果马铃薯管理不当(例如暴露在光线下),它们的积累就会增加。虽然少量的 SGA 只会导致难闻的味道,但摄入大量则会引起食物中毒。番茄的绿色组织(例如叶子和未成熟果实)中主要的 SGA 是 α-番茄碱和脱氢番茄碱(Friedman 2002)。然而,在番茄果实成熟过程中,未成熟果实中积累的 α-番茄碱会被代谢并转化为无毒无苦味的 SGA esculeoside A(Iijima 等人 2009)。茄子主要产生 α-茄碱和 α-茄精(Sánchez-Mata 等人 2010)。此外,多种 SGA,例如脱米辛(S. acaule)和瘦素 I 和 II(S.
摘要:奎宁是一种历史上重要的天然产物,其中含有甲氧基群,假定在后期途径阶段掺入。在这里,我们表明奎宁和相关的金chona生物碱中的甲氧基群被引入起始底物色素。用金chona植物的喂养研究明确地表明,5-甲氧氨基胺被用作植物中的奎宁生物合成中间体。我们发现了编码负责的氧化酶和甲基转移酶的生物合成基因,并使用这些基因重建了尼古替尼亚尼古替尼亚氏菌的Cinchona生物碱生物合成途径的早期步骤,以产生甲氧基和甲氧基甲氧基氧化氧化氧化氧化物碱性碱的混合物。重要的是,我们表明,色胺和5-甲氧氨基胺底物的共发生,以及下游途径酶的底物滥交,可以平行地形成甲氧基化和脱甲氧基化的甲氧基化和脱甲氧基化的生物碱。
已经评估了已评估了使用TDN或SYN的多种烟草(TDN)和合成尼古丁(SYN)以及多种电子烟液体,通过ChiraL chirid-Syromtion(Chirail chirail coly detroper)(CHIRARE CHIRARE-SERAPERASE(CHIRARE CHIRAL)的驱动器(r-和S-核酸元)确定型号或SYN的液体来确定对照组的分布( (dad-uv)。 生成的数据用于测试不匹配的VS。 匹配C Heetham等人的假设。 是区分包含TDN与SYN产品的产品的一种手段。 在本研究中进行了两组实验。 第一个实验是在一系列11个商业尼古丁样品上进行的(三个特征为烟草衍生,而8个则以合成尼古丁为特征)。 商业尼古丁样品是来自烟草衍生的尼古丁(TDN)源或合成尼古丁(SYN)的。 一些商业尼古丁样品是尼古丁盐。 第二个实验是在一组11枚电子烟的电子液体上进行的。 电子液体中的尼古丁来自TDN或SYN。 根据Internet上的广告信息或电子烟包装上的印刷信息来区分电子液体样品。 第一个商业TDN样品中的第一个商业中都没有已评估了使用TDN或SYN的多种烟草(TDN)和合成尼古丁(SYN)以及多种电子烟液体,通过ChiraL chirid-Syromtion(Chirail chirail coly detroper)(CHIRARE CHIRARE-SERAPERASE(CHIRARE CHIRAL)的驱动器(r-和S-核酸元)确定型号或SYN的液体来确定对照组的分布( (dad-uv)。生成的数据用于测试不匹配的VS。匹配C Heetham等人的假设。是区分包含TDN与SYN产品的产品的一种手段。在本研究中进行了两组实验。第一个实验是在一系列11个商业尼古丁样品上进行的(三个特征为烟草衍生,而8个则以合成尼古丁为特征)。商业尼古丁样品是来自烟草衍生的尼古丁(TDN)源或合成尼古丁(SYN)的。一些商业尼古丁样品是尼古丁盐。第二个实验是在一组11枚电子烟的电子液体上进行的。电子液体中的尼古丁来自TDN或SYN。根据Internet上的广告信息或电子烟包装上的印刷信息来区分电子液体样品。第一个商业TDN样品中的第一个商业
麦角包括克拉维切普里亚(Claviceps Purpurea)产生的两个一般生物碱生物分子类别:胺生物碱和氨基酸生物碱。麦角生物碱是从紫菜菌(C. purpurea)获得的,紫菜菌是一种在谷物中生长的有毒蘑菇。amin生物碱是5-羟色胺受体的拮抗剂,氨基酸生物碱对5-羟色胺受体的选择性较小,并作用于其他单胺受体。amin生物碱具有认知增强的特性。麦角,含有四个生物碱(厄尔哥诺生物)的麦角毒素衍生物中的生物分子:麦角糖蛋白,麦角核蛋白,X- 2甲基crip依蛋白和b- er依蛋白(图2)。hnderjin含有四个二氢衍生物的麦毒素。这些生物分子中的每一个都有各种药理活性,并一起移动以产生海水的作用[11]。
上清液测量并表示为非单宁酚类干物质的含量。从上述结果中,样品的单宁含量计算如下如下(%)=总酚类(%) - 非单宁酚类(%)确定总类黄酮含量为0.5 ml的等分试样(10mg-12ml)稀释的样品溶液的等分试样(10mg-12ml)稀释的样品溶液与蒸馏水的溶液混合了2ml,并随后将水与0.15 ml溶解了5%。6分钟后,加入0.15 ml的10%ALCL 3溶剂素,并允许6分钟,然后将2ml的4%NaOH溶液添加到混合物中,并彻底混合并允许静置15分钟。在510nm的水毛坯下确定混合物的吸光度。结果表示为提取物[8]的mg re(rutin当量)g -1。结果和讨论,确定并在表中确定了乙醇乙醇提取物的总生物碱,总酚类,总霉菌和单宁含量。总生物碱含量记录为13.6 mg 100g -1。总酚类和单宁含量表示为单宁酸等效,总黄酮为鲁丁素等效。选定的植物样品显示了总酚类的72.1 mg tae g -1,单宁53.5 mg tae g -1和总黄酮的24.9 mg re g -1。药用植物的药物显示出简单,有效,没有副作用的额外优势,并提供了广泛的活性,重点是慢性和退化性疾病的预防作用(Chin等,2006)。药用植物具有称为植物化学化学的化学取代,可对人体产生各种生理作用。药用植物是传统药物,现代药物,营养食品,食品补充剂,FLOK药物,药物中间体和化学实体的最丰富的生物资源(Ncube等,2008; Nirmala eta eta eta al。,2011 A,b)。植物化学筛查是发现新药的重要一步,因为它为临床意义的植物提取物提供了有关特定原发性和二级代谢的信息。植物化学物质用于预防和治疗糖尿病,癌症,心脏病和高血压(Waltnerlaw等,2002)。几种药用植物的治疗作用归因于存在酚类化合物,例如类黄酮,酚酸,原腺苷,二萜和单宁(Pourmorad等,2006)。在本研究中,拟杆菌的乙醇提取物的定性植物化学分析揭示了生物碱,糖苷,类黄酮,皂苷,苯酚和单宁。乙醇提取物中上述化合物的阳性反应可能是由于有机溶剂中植物血管菌的溶解能力所致。早些时候,在Strumpfia Maritima(Hsu等,1981),Uncaria物种(Heitzman等,2005),Mitracarpusscaber(Abere等,2007)和Teucrium stocksianum(Rahim等人,2012年)进行了类似的研究。天然产品在各种疾病的药物开发中发挥了重要作用。直到1990年的科学家们认为,普拉特生产的大多数化合物都是无用的废物。这些废物化合物称为二级代谢产物。,但后来发现这些化合物可能会执行大量功能。这些化合物中的许多不能在商业基础上经济合成。次级代谢产物具有复杂的立体结构,并具有许多手性中心,这对于各种生物活性至关重要[9]。来自天然来源的二级代谢产物是药物开发的好产品,因为在生活系统中详细阐述,它们可以看出与药物更相似,并且比合成药物表现出更多的生物友好性[10]。植物会产生各种生物活性分子,使其成为多种类型的药物的丰富来源。植物带有天然产品表现出药理学和生物学活动,并在威胁生命的条件下起重要作用[11]。类黄酮,据报道会发挥多种生物学作用,包括抗炎,抗剥离,抗过敏性,抗病毒和抗癌性活性[12,13]。单宁已经报道了石榴,tambolan和番石榴的叶子,并且在抗diarhoeal和抗甲状腺漏剂制剂中使用了药物rannins [14,15]。皂苷是类固醇的糖苷,是植物中发现的类固醇生物碱,尤其是在植物皮中,它们形成蜡状保护涂层。它们可用于降低胆固醇,作为抗氧化剂和抗炎药。