食用油是一个挑战,因为它是一种低价值的废物。”他解释说。,但由于其碳足迹很低,因此它是运输燃料的出色选择,对UCO的需求增加了。“在某些情况下,UCO变得比原始油贵”。同样的低碳-LI PID-FEEDSTOCK可用于生产生物燃料燃料,还可以制作生物柴油或重新燃料柴油(也称为欧洲的HVO)。萨德勒指出,SAFS和Bio/Renewa Ble柴油之间正在进行的COM请愿书对废物收集者以及农业生产商来说应该有吸引力,因为它增加了对脂质产品的需求。“但是,农田对棕榈油,低芥酸菜籽,大豆等诸如原料的压力很大,这就是为什么政府在短期内实施100%SAF政策将非常困难的原因。”在中期其他生物燃料生产技术中,将需要投放能够使用更广泛的生物质原料的市场。
作者:克拉拉菜单1,Laure Pecquerie 2,Cedric Bacher 3,Mathieu Doray 4,Tarek Hattab 5,5 Jeroen van der Kooij 6,Martin Huret 1 1 1 1解(生态系统动力学和可持续性) 6539 CNRS/UBO/IRD/IFREMER,LEMAR-IUEM,PLOUZANé,法国,10 3 Ifremer,Dyneco,dyneco,f-29280,法国Plouzané,法国4解码(生态系统动力学和可持续性)法国Sète的Ifremer和Ird 6环境,渔业和水产养殖科学中心,Lowestoft,英国,英国15通讯作者:Clara菜单,clara.menu@ifremer.fr,Ifremer Center Bretagne LBH,29280Plouzané20
Lee, J., Kim, S., You, S. 和 Park, Y.-K. (2023) 通过木质纤维素生物质为基础的综合可再生能源系统的热化学转化产生生物能源。《可再生和可持续能源评论》,178,113240。(doi:10.1016/j.rser.2023.113240)这是根据知识共享许可存放在此处的作品的作者版本:https://creativecommons.org/licenses/by-nc-nd/4.0/。如果您想引用,建议您查阅出版商版本:https://doi.org/10.1016/j.rser.2023.113240 https://eprints.gla.ac.uk/293947/ 存放日期:2023 年 3 月 8 日
心脏病是一种常见的疾病,在美国(美国)和全球范围内一直是死亡率的主要原因,在美国每4例死亡中,有1个死亡人数,占世界总死亡人数的16%(1,2)。随着每年65岁及65岁以上的全球人口的增加,心脏病的患病率也在增加(3)。在患有心脏病,心力衰竭,严重状况的患者中,遭受了超过620万美国成年人的困扰,占每年死亡的13.4%,超过一半的心脏病归因于死亡(4)。到2030年,估计心力衰竭的美国成年人数量将增加到超过800万或人口的3%(4)。心力衰竭发展的总体终生风险从95岁时的20%到45%到45%,性别和种族之间的差异。在患有升高的血压和体重指数等危险因素的人群中,终生风险也有显着增加(4)。
2月19日,星期日上午9:30 - 上午11:00房间9 Oroboros Instruments GMBH线粒体生物能学 - 一种定量的分析和诊断方法线粒体适应性对于大脑和肌肉功能至关重要,对可预防和年龄相关的变性性疾病的抵抗力至关重要,因此具有质量的质量。氧化磷酸化(OXPHOS)的能力是线粒体适应性的基本组成部分,也是生物能力中的关键元素。全面和实时的OXPHOS分析基于与线粒体核心能量代谢相关的生物物理和生化概念。它将生物能学扩展到线粒体生理水平,用于健康和疾病的功能诊断。Oroboros O2K是定量高分辨率呼吸测定法(HRR)和全面的OXPHOS分析的最新呼吸仪。它具有较高的信号稳定性和不受限制的滴定灵活性,适合于应用复杂的基板抑制剂抑制剂滴定(西装)方案,这是研究线粒体途径和呼吸控制健康和疾病的基础。高分辨率和对氧浓度的精确控制能够研究正氧,缺氧和高氧下的线粒体功能。使用O2K-荧光计,ROS产生的荧光测定,线粒体膜电位,ATP产生和钙吸收可以实时和同时与HRR直接结合。演讲者Erich Gnaiger,Oroboros Instruments GmbH用于监测Q-和NAD-REDOX状态和光生物学的模块在NextGen-O2K中实现,进一步扩展了分析分辨率和开放新窗口,以研究生物能学的生物物理原理。我们将介绍NextGen-O2K和O2K-Fluorespremeter的应用,以探索各种样品中的线粒体生理和病理学,并找到与线粒体相关疾病的溶液。
具有碳捕获和存储(BECC)和生物炭的生物能源在我们寻求实现雄心勃勃的CO²去除目标方面起着关键作用。这些创新技术提供了有希望的解决方案来解决气候变化,这不仅可以减轻排放,还可以从大气中积极隔离碳。当我们探索这些方法的潜力和挑战时,我们发现它们在铺平更具可持续性和更独立的未来的道路上的意义。
需要大量的创新技术来实现可持续发展目标(SDGS)(Frankl 2020 I)。实现最不可能的可靠和可持续的能源系统是一个全球挑战。可再生能源对于所有能源部门的关键,直到最新世纪中期(到2050年2021年II)才能实现气候中性能源供应。在有利的政策环境,市场机会和大量成本降低的驱动下,可变的可再生能源(VRE)等可变的可再生能源(VRE)等越来越重要的能源是越来越重要的能源来扩展能源访问并基于清洁能源启用电气化。这实质上改变了电力系统的结构和操作,但也影响了热量和运输部门的可再生能源。
1医学系(心脏病学系),美国纽约市纽约市阿尔伯特·爱因斯坦医学院爱因斯坦老化研究所WILF家庭心血管研究所,美国纽约,10461,美国。2莫里斯大学医学与健康科学系,意大利坎帕巴索86100。3费拉拉大学医学科学系,费拉拉44121,意大利。4 Maria Cecilia医院,GVM护理与研究,Cotignola 48033,意大利。 5心理与身体健康和预防医学系,范维特利大学,那不勒斯80100,意大利。 6高级生物医学科学系“ Federico II”大学,国际转化研究与医学教育(ITME)财团,学术研究部门,Naples 80131,意大利。 7爱因斯坦 - 马特西奈糖尿病研究中心分子药理学系(ES-DRC),爱因斯坦神经免疫和炎症研究所(INI),弗莱舍尔糖尿病与代谢研究所(FIDAM),艾伯特·爱因斯坦医学院,艾伯特·爱因斯坦医学院 #作者同样贡献。4 Maria Cecilia医院,GVM护理与研究,Cotignola 48033,意大利。5心理与身体健康和预防医学系,范维特利大学,那不勒斯80100,意大利。 6高级生物医学科学系“ Federico II”大学,国际转化研究与医学教育(ITME)财团,学术研究部门,Naples 80131,意大利。 7爱因斯坦 - 马特西奈糖尿病研究中心分子药理学系(ES-DRC),爱因斯坦神经免疫和炎症研究所(INI),弗莱舍尔糖尿病与代谢研究所(FIDAM),艾伯特·爱因斯坦医学院,艾伯特·爱因斯坦医学院 #作者同样贡献。5心理与身体健康和预防医学系,范维特利大学,那不勒斯80100,意大利。6高级生物医学科学系“ Federico II”大学,国际转化研究与医学教育(ITME)财团,学术研究部门,Naples 80131,意大利。 7爱因斯坦 - 马特西奈糖尿病研究中心分子药理学系(ES-DRC),爱因斯坦神经免疫和炎症研究所(INI),弗莱舍尔糖尿病与代谢研究所(FIDAM),艾伯特·爱因斯坦医学院,艾伯特·爱因斯坦医学院 #作者同样贡献。6高级生物医学科学系“ Federico II”大学,国际转化研究与医学教育(ITME)财团,学术研究部门,Naples 80131,意大利。7爱因斯坦 - 马特西奈糖尿病研究中心分子药理学系(ES-DRC),爱因斯坦神经免疫和炎症研究所(INI),弗莱舍尔糖尿病与代谢研究所(FIDAM),艾伯特·爱因斯坦医学院,艾伯特·爱因斯坦医学院#作者同样贡献。
能源效率和可再生资源的发展是解决全球能源危机和气候变化的关键问题。这项研究探讨了人工智能(AI)在提高能源效率并取代可再生资源(例如太阳能,风能和生物能源)的发展中的作用。通过使用结合定性和定量方法的混合方法方法,本研究确定了AI在可再生能源领域中的具体应用。结果表明,AI可以显着提高运行效率并减少能源浪费。示例包括对太阳能电池板的放置,风力涡轮机的预测维护以及优化沼气生产中的发酵过程。在可再生能源中实施AI不仅可以提高效率,还可以降低成本并支持可持续性。这项研究通过提供可再生能源领域的AI益处的经验证据来为能源和AI技术领域做出贡献。建议政府和能源行业广泛采用AI,投资于技术和劳动力培训,并加强能源,技术和学术方面的合作,以开发创新且适用的AI解决方案。进一步的研究应进行更广泛,更全面的研究,包括分析AI实施的长期成本和收益,以及AI技术与现有能源管理系统的集成。