摘要文章历史野生酵母作为水果和蔬菜的自然微生物组的一部分,由于其生物学活性,对养分来源的需求较低和抗真菌活性的广泛范围,因此有希望将其作为生物控制剂的候选者。在本研究中,从冷藏期结束时,从哈萨克斯坦东南部的一个私人园艺农场中存储的苹果和梨的梨层中分离了27种酵母菌菌株。各种体外板测试表现出八种菌株中对青霉膨胀,替代品替代品和Acremonium Alternatum的高抑制活性,其区域序列定义为Metschnikowia pulcherrima。接种两种Apple品种的实验将菌株MP-03识别为最有效的实验。在开花和成果期间用冻干溶液对当地的苹果树品种“ Aport”,“ Voskhod”和“ Talgarskoe”,与对照相比,在开花和结果期间,MP-03菌株的冻干溶液降低了结scab的发生率和严重程度(Venturia Inaequalalis)。苹果的治疗导致健康水果的产量提高。此外,牢固性和体重保留指数在处理的水果中还显示出更好的结果。关键字:收获后变质;杀真菌活动;微生物组;存储
3。Adelakun Oluyemisi Elizabeth和Olusegun James Oyelade。“潜在地使用秋葵种子(Abelmoschus esculentus Moench)面粉来进行食物强化和加工的影响”。面粉和面包及其在预防健康和疾病方面的防御力。学术出版社,(2011年):205-212。
在将非本土生物防治剂 (BCA) 引入一个国家之前,应评估其对农业和自然生态系统的潜在风险。该评估以对相关 BCA 进行一段时间的研究为基础。如果研究是在 BCA 计划释放的国家进行的,则首次进口 BCA 用于研究应按照 EPPO 标准 PM 6/1(2) 的通知程序进行,首次进口非本土生物防治剂用于封闭条件下的研究 (EPPO, 2023)。如果所需的研究和大规模饲养已在另一个国家进行,并且研究的结论是 BCA 对农业和自然生态系统不构成风险,则 BCA 也可以在进口后直接释放。本标准主要涉及在研究和大规模饲养完成后释放 BCA。如果 BCA 是为了传统生物防治而释放,则旨在建立和控制一种或多种害虫,
2022 年 2 月 28 日 — & Raaijmakers J. M. 2003:病原体自我防御:抵消微生物拮抗作用的机制。Ann.Rev.Phytopathol.41:501-538。Fillinger, S., Ajouz, S...
植物病害爆发代表着全球粮食安全和环境可持续性的重大挑战,导致初级生产力下降、生物多样性减少,以及全球严重的粮食/饲料短缺。合成杀菌剂的滥用已经对人类健康和生态系统造成了重大危害。某些人类疾病,如阿尔茨海默氏症和自闭症,在过去几十年中急剧上升,这一趋势部分归因于现代农业和园艺中杀菌剂的使用/过度使用。鉴于这些令人担忧的迹象,现在应该重新考虑植物病害管理策略了。使用某些有益微生物(称为生物防治剂)有望成为对抗植物病原体的环保方法。卵菌通常被视为植物界的坏人,通过晚疫病、猝倒病和枯萎病等破坏性疾病造成混乱,这可能会造成灾难性的后果,例如爱尔兰马铃薯饥荒。然而,并非所有卵菌都是有害的!有些菌是伪装的好家伙,显示出帮助我们对抗植物疾病的潜力,可以作为有效的生物防治剂。了解生物防治卵菌保护作用的潜在机制对于实现理想结果和制定创新策略至关重要。卵菌的生物防治机制可分为五类:i)菌寄生,ii)分泌溶解酶,iii)与病原体竞争营养和空间,iv)诱导系统抗性(ISR),v)产生注射细胞(枪细胞)。本综述阐明了卵菌采用的生物防治机制,强调了它们的潜在实际意义以及对植物生长的积极影响。本文还讨论了影响生物防治卵菌功效的土壤和环境因素,以及旨在提高其生物防治效率或扩大目标病原体范围的各种策略。尽管对生物防治卵菌的了解取得了进展,但由于受环境条件、土壤类型、接种物活力、竞争微生物的影响,其田间表现不一致,因此其商业应用面临挑战。通过开发稳定的配方、基因改造、合成生物学、结合多种菌株以及与其他农艺实践相结合来提高生物防治卵菌的功效,可以帮助克服这些挑战并促进其在可持续农业中的应用。进行全面的风险评估以避免非目标效应,并简化监管审批流程也至关重要。了解生物防治卵菌如何抵抗植物病原体将提高我们对有益和有害微生物之间相互作用的基本认识,增强我们预测受其影响的植物疾病发展动态的能力
Henrique Bley-总协调员:Henrique.bley@agro.gov.br植物健康和农业投入部:dsv@agro.gov.br农业部农业秘书处,巴西农业部和牲畜的牲畜:
脂肽具有化学农药的有希望的替代品,用于植物生物防治目的。我们的研究通过检查它们与脂质膜的相互作用,探讨了脂肽表面蛋白(SRF)和富霉素(FGC)的独特植物生物防治活性。我们的研究表明,FGC具有直接的拮抗活性,对辣椒粉,并且在拟南芥中没有明显的免疫吸收活性,而SRF仅表现出刺激植物免疫力的能力。它还揭示了SRF和FGC对膜完整性和脂质堆积的影响。SRF主要影响膜的物理状态,而没有明显的膜通透性,而FGC透化膜而不会显着影响脂质堆积。从我们的结果中,我们可以提出脂肽的直接拮抗活性与它们透化脂质膜的能力有关,而刺激植物免疫的能力更可能是它们改变膜的机械性能的能力。我们的工作还探讨了膜脂质成分如何调节SRF和FGC的活动。固醇对两种脂肽的活性产生负面影响,而鞘脂会减轻对膜脂质填料的影响,但会增强膜泄漏。总而言之,我们的发现强调了考虑膜脂质填料和泄漏机制在预测脂肽的生物学作用中的重要性。它还阐明了膜组成与脂肽的有效性之间的复杂相互作用,从而提供了靶向生物控制剂设计的见解。
植物寄生线虫 (PPN) 对全球作物产量构成重大威胁,估计每年造成农业损失 1570 亿美元。虽然合成化学杀线虫剂可以有效控制 PPN,但过度使用会对人类健康和环境造成不利影响。生物防治剂 (BCA),例如根际细菌和真菌,是安全且有前景的 PPN 控制替代方案。这些 BCA 与植物根系相互作用,产生胞外酶、次生代谢产物、毒素和挥发性有机化合物 (VOC) 来抑制线虫。植物根系分泌物在吸引有益微生物进入受侵染的根系方面也发挥着至关重要的作用。植物与根际微生物之间对抗 PPN 的复杂相互作用大多尚未开发,这为通过多组学技术发现新型杀线虫剂开辟了新途径。先进的组学方法,包括宏基因组学、转录组学、蛋白质组学和代谢组学,已促成杀线虫化合物的发现。本综述总结了细菌和真菌生物防治策略的现状及其对线虫病(PPN)的控制机制。此外,还探讨了基于组学的方法对于探索新型杀线虫剂的重要性,以及PPN生物防治的未来发展方向。本综述强调了多组学技术在PPN生物防治中的潜在重要性,以确保可持续农业。
1)进口,州际运动和环境释放已经过基因工程的列出的监管生物可能需要根据第340部分第7 CFR颁发的不同许可。任何未经授权的进口,州际运动或环境释放(包括意外释放)的受管制有机体违反这些法规。在移动基因工程生物之前,请在:https://www.aphis.usda.gov/aphis/aphis/ourfocus/biotechnology上联系APHIS生物技术监管服务(BRS)。如果BR不需要许可证,请联系害虫,病原体和生物防治许可单元,以获取进一步的指导:pest.permits@usda.gov 2)如果在发货中确定了动物病原体,以确保适当的保障,请参考http://www.aphis.usda.gov/import_export/animals/animal_import/animal_import/animal_imports_anproducts.shtml 3)如果确定了人类病原体国家监管机构。请联系适当的机构,例如美国环境保护局,美国鱼类和野生动物服务局,美国食品和药物管理局,疾病控制与预防中心,Aphis兽医服务部门,Aphis Biotechnology监管服务或您所在州的农业部确保正确许可。5)如果您考虑续签本许可证,则应在本许可到期日之前的90天提交申请,以确保继续承保。要求需要遏制设施的许可可能需要更长的时间来处理。6)当受调节的材料包括国内土壤时,您必须遵守所有当地检疫,请参见:http://wwwww.aphis.usda.gov/planthealth/pests_and_and_disease,特别关心土壤从某些大陆区域移动的特殊关注:进口消防蚂蚁: Golden Nematodes:http://www.aphis.usda.gov/planthealth/gn;土豆/苍白的囊肿线虫:http://www.aphis.usda.gov/planthealth/pcn; phytophthora ramorum(突然的橡木死亡):http://www.aphis.usda.gov/plant-health/sod
摘要:生物防治是一种控制害虫的技术,无论是使用其他生物体使用其他生物体,昆虫和螨虫,杂草,杂草还是影响动物或植物的病原体。因此,本文的目的是使用标准的微生物学方法研究了从尼日利亚的河流和阿比亚州收集的trichoderma harzianum trichoderma harzianum的可可糖(Colocasia esculenta)腐败真菌的目的。获得的结果表明,分离的真菌是曲霉,尼日尔曲霉,粘液sp和penicillium and trichorderma sp。拮抗真菌被分子鉴定为trichoderma harzianum菌株A0H287。生物拮抗剂T. harzianum的抑制作用表明,它使尼日尔的生长降低了50%,粘液sp降低了34.1%,青霉sp降低了70%,而弗拉夫斯则降低了63.7%。研究表明,生物拮抗剂trichoderma在减少大多数致病真菌的生长方面表现出有效性,因此可以建议作为化学杀菌剂的替代品。doi:https://dx.doi.org/10.4314/jasem.v28i3.10 Open Access策略:Jasem发表的所有文章都是Open-Access文章,并且可以免费下载,复制,复制,重新分发,重新分发,重新分发,翻译和阅读。版权策略:©2024。作者保留了版权和授予JASEM的首次出版物的权利,同时在创意共享署名4.0 International(CC-By-4.0)许可下获得许可。,只要引用了原始文章,就可以在未经许可的情况下重复使用本文的任何部分。将本文列为:Akomah-Abadaike,O。N; Didia,H。E.(2024)。 J. Appl。将本文列为:Akomah-Abadaike,O。N; Didia,H。E.(2024)。J. Appl。从尼日利亚河流和阿比亚州收集的Trichoderma harzianum的Cocoyam(Colocasia esculenta)变质真菌。SCI。 环境。 管理。 28(3)699-706日期:收到:2024年1月18日;修订:2024年2月24日;接受:2024年3月12日发表:2024年3月29日关键字:Trichoderma Harzianum,Cocoyam,Cocoyam,抑制作用,Penicillium SP,Biocontrol Cocoyam是一种多年生的单子叶植物和家族的草本植物。 这是非洲,亚洲和太平洋的许多发展中国家的重要主食。 这是世界上最古老的粮食作物之一,据信是在最终传播到世界其他地区之前在东南亚首次被驯化的。 最常见的两个物种是共老见esculenta(红色类型或芋头)和叶thosoma sagittifolium(白色类型或tannia)。 在尼日利亚,Cocoyam主要用于可食用的Corms,作为补充山药和木薯的碳水化合物的来源以及用于药用目的(Bartholomew等,2017)。 Cocoyam被认为主要由低收入者和经济脆弱的群体消耗。 尼日利亚目前是世界领先SCI。环境。管理。28(3)699-706日期:收到:2024年1月18日;修订:2024年2月24日;接受:2024年3月12日发表:2024年3月29日关键字:Trichoderma Harzianum,Cocoyam,Cocoyam,抑制作用,Penicillium SP,Biocontrol Cocoyam是一种多年生的单子叶植物和家族的草本植物。 这是非洲,亚洲和太平洋的许多发展中国家的重要主食。 这是世界上最古老的粮食作物之一,据信是在最终传播到世界其他地区之前在东南亚首次被驯化的。 最常见的两个物种是共老见esculenta(红色类型或芋头)和叶thosoma sagittifolium(白色类型或tannia)。 在尼日利亚,Cocoyam主要用于可食用的Corms,作为补充山药和木薯的碳水化合物的来源以及用于药用目的(Bartholomew等,2017)。 Cocoyam被认为主要由低收入者和经济脆弱的群体消耗。 尼日利亚目前是世界领先28(3)699-706日期:收到:2024年1月18日;修订:2024年2月24日;接受:2024年3月12日发表:2024年3月29日关键字:Trichoderma Harzianum,Cocoyam,Cocoyam,抑制作用,Penicillium SP,Biocontrol Cocoyam是一种多年生的单子叶植物和家族的草本植物。这是非洲,亚洲和太平洋的许多发展中国家的重要主食。这是世界上最古老的粮食作物之一,据信是在最终传播到世界其他地区之前在东南亚首次被驯化的。最常见的两个物种是共老见esculenta(红色类型或芋头)和叶thosoma sagittifolium(白色类型或tannia)。在尼日利亚,Cocoyam主要用于可食用的Corms,作为补充山药和木薯的碳水化合物的来源以及用于药用目的(Bartholomew等,2017)。Cocoyam被认为主要由低收入者和经济脆弱的群体消耗。尼日利亚目前是世界领先