目标指导的行为需要有意识和潜意识引起的反应冲突。神经元增益控制增强了加工效率,对于解决方案至关重要,尽管它面临固有的物理限制,但可以通过药理或脑刺激干预措施来增加。这项研究检查了阳极经颅直流电流刺激(ATDCS)和哌醋甲酯(MPH)对冲突处理的影响。健康的成年人(n = 105)执行了一项艰巨的任务,脑电图(EEG)用于评估α和theta带活性(ABA,TBA)。结果表明,将ATDC与MPH相结合的增强认知控制和减少反应冲突比仅与ATDC相结合,尤其是当两种冲突类型的类型共同发生时。ATDC和ATDCS + MPH均表现出(前)补充运动区域中相似的任务诱导的ABA和TBA调制,表明增益控制增强。重叠的额叶中部区域的神经解剖学效应表明,ATDC和MPH具有共同的神经元控制机制,尤其是在高频道/需求的情况下。
b“帕金森氏病(PD)是一种常见的神经退行性疾病,从病理生理上表现出来,其遗传性Nigra神经元丧失和 - 在整个中枢神经系统中的积累。到目前为止,几个遗传和环境因素尚不清楚,但是由于证实该疾病的遗传形式可以在约10%的患者,环境因素以及遗传因素与潜在的分子机制之间的相互作用中发现,这可能在PD发展中起重要作用。已知的因素,例如复发性创伤性脑损伤,而肠道和口腔菌群也越来越多地观察到PD患者的不平衡。PD中的微生物营养不良是否在该疾病之前,还是由于肠道轴的水平上的神经元通信的结果,仍有待解决。此外,由于微生物组是一个很容易受到各种干预措施(例如饮食和益生菌补充剂)的影响,因此微生物营养不良及其在PD中的因素和作用的全面表征尤其重要,为可能的治疗提供了新的靶标。
Author contributions Conceptualization : EC, BG, RAAI, AB Data curation : EC, JB Formal analysis : EC Funding acquisition : AB Investigation : EC, JB, AB Methodology : EC, BG, RAAI, MA, AB Project administration : EC, AB Resources : AB Software : EC, RB, RAAI, AB Supervision : AB, BG, RAAI Validation : Visualization : EC Roles/Writing - original draft : EC, BG, AB Writing - review & editing :MA,Raai,AB
图3。ERP分析及其结果的概述。 A. 在受试者S3中表现出由听觉刺激(红点)或按钮按(绿点)引起的诱发电势的位置。 B. 在听觉刺激(左)和位置A1和M1的纽扣刺激期间ECOG活动的时间课程及其跨审判平均值。 位置A1处的单次试验ECOG响应在刺激发作处进行相锁定,并表现出与跨审判平均值相同的N1,P1和P2分量。 相比之下,位置M1处的单次试验ECOG响应在运动开始时没有相锁,因此在所有试验中,平均没有诱发的电位。 相反,在所有试验中的平均水平造成了缓慢的皮质潜力。 C。位于A1-3和M1-2的平均AEP(左侧的红色痕迹)和MRP(右侧的绿色痕迹)及其在受试者S3中的平均值。 所有听觉位置均表现出清晰的N1,P1和P2组件,并且所有运动位置均具有突出的慢速皮质潜力。 D.来自受试者S3位置A1和M1的ERP的时间课程,在两个不同的频带(<3 Hz和3-40 Hz)中。 AEP的特征成分由3-40 Hz频段捕获。 相反,只有在<3 Hz频段中才能看到MRP中的缓慢负电位。 E.基线(-400至0 ms)和ERP(分别为0至400毫秒)周期(分别为顶部和底部)的<3 Hz和3–40 Hz频段(分别为top和底部)的3–40 Hz频段,在所有与任务相关的位置和所有受试者中都计算出来。 基线活性主要由3-40 Hz带功率组成(P <0.001,配对t检验)。ERP分析及其结果的概述。A.在受试者S3中表现出由听觉刺激(红点)或按钮按(绿点)引起的诱发电势的位置。B.在听觉刺激(左)和位置A1和M1的纽扣刺激期间ECOG活动的时间课程及其跨审判平均值。位置A1处的单次试验ECOG响应在刺激发作处进行相锁定,并表现出与跨审判平均值相同的N1,P1和P2分量。相比之下,位置M1处的单次试验ECOG响应在运动开始时没有相锁,因此在所有试验中,平均没有诱发的电位。相反,在所有试验中的平均水平造成了缓慢的皮质潜力。C。位于A1-3和M1-2的平均AEP(左侧的红色痕迹)和MRP(右侧的绿色痕迹)及其在受试者S3中的平均值。所有听觉位置均表现出清晰的N1,P1和P2组件,并且所有运动位置均具有突出的慢速皮质潜力。D.来自受试者S3位置A1和M1的ERP的时间课程,在两个不同的频带(<3 Hz和3-40 Hz)中。AEP的特征成分由3-40 Hz频段捕获。相反,只有在<3 Hz频段中才能看到MRP中的缓慢负电位。E.基线(-400至0 ms)和ERP(分别为0至400毫秒)周期(分别为顶部和底部)的<3 Hz和3–40 Hz频段(分别为top和底部)的3–40 Hz频段,在所有与任务相关的位置和所有受试者中都计算出来。基线活性主要由3-40 Hz带功率组成(P <0.001,配对t检验)。AEP的P1和N1组件由3-40 Hz带功率(P <0.001,配对t检验)组成,而MRP的主要由<3 Hz频带功率组成(P <0.001,配对t检验)。F.功率(顶部)和3-40 Hz频段中的AEP(底部)的形状,用于试验最高(实心)且最低(虚线)的第10个百分位数的固定力(计算每个任务相关位置,平均所有位置和受试者的平均)。较高的刺激性功率会导致AEP中较高的N1振幅(p <0.05,t检验,fdr校正了n = 22)。G.功率(顶部)和MRP的形状(底部)。前刺激功率不会显着影响MRP的形状(p <0.05,t检验,fdr校正了n = 15)。
大脑计算机界面(BCI)是处理大脑活动以从中解码特定命令的系统,例如在用户Image-Im-Ine运动时生成的运动成像模式。尽管对BCI的兴趣日益增加,但由于用户内部和内部的可变性,它们引起了重大挑战,尤其是在解码不同的神经模式方面。文献表明,各种预测因子与受试者的BCI绩效相关。在这些指标中,神经生理学的预测符似乎是最有效的,尽管研究通常涉及小样本,结果并未被复制,从而质疑其可靠性。在我们的研究中,我们使用了一个带有85位受试者的大型数据集来分析文献和BCI性能中确定的不同预测因子之间的关系。我们的发现表明,在此数据集中可以替换了测试的六个预测因子中的四个。这些结果强调了验证文献发现的必要性,以确保此类预测因子的可靠性和适用性。
糖尿病(DM),尤其是2型糖尿病(T2DM),是全球最普遍的慢性疾病之一,具有广泛的并发症,严重影响了患者的生活质量(1-3)。此外,糖尿病并发症,例如糖尿病性视网膜病(DR),糖尿病性肾病(DN),糖尿病足溃疡(DFUS),Sarcopenia和Neuropathy,尽管糖尿病护理的进步,但仍继续挑战临床管理(4-6)。与糖尿病相关并发症的基础机制涉及各种因素,包括代谢障碍,免疫反应,内皮功能障碍和线粒体损伤等(7-10)。为了更深入地了解与糖尿病相关并发症的病理生理学,我们组织了当前的研究主题,“对与糖尿病相关并发症的病理生物生物生物生物生物的新颖见解:在促进II的改善治疗策略的影响之后”,此后,II卷,旨在探索这些机构的成功I,旨在探索这些机制。该研究主题于2023年5月23日启动,并于2025年1月17日关闭。在这几个月中,收到了总共88项提交的意见,包括84项手稿和4个摘要。Finally, 37 high-quality articles were selected and published, covering a wide range of topics related to diabetes-related complications, including DR, DN, diabetic peripheral neuropathy (DPN), T2DM-associated periodontitis, metabolic regulation, immune-in fl ammatory processes, and emerging biomarkers ( Yang et al.,Li等。 ,Li等。 ,他等人。 ,Xu等。 )。,Li等。,Li等。 ,他等人。 ,Xu等。 )。,Li等。,他等人。,Xu等。)。这些研究不仅为推动这些并发症的机制提供了新的见解,还强调了潜在的生物标志物,
摘要:随着系统的增长越来越大,人类操作员经常被忽略。尽管人类机器人互动(HRI)在认知资源方面可能非常苛刻,但现有系统尚未考虑操作员的心理状态(MS)。由于人类不是天前的代理人,这种缺乏可能导致危险情况。现在,神经生理学和机器学习工具的数量越来越多,可以进行有效的操作员的MS监视。因此,在闭环解决方案中向MS发送反馈。涉及一致的自动化计划技术来处理这种过程可能是重要的资产。这篇观点文章旨在为读者提供重要的文献综合,以期实施适应操作员MS的系统,以改善人类机器人操作的安全性和性能。首先,对于远程操作,对这种方法的需求是HRI的示例。然后,定义了几种对这种类型的HRI至关重要的MS,以及相关的电生理标记。将重点放在链接到与任务和任务需求的主要降级MS以及与系统输出(即反馈和警报)链接的附带MS。最后,详细详细介绍了共生HRI的原理,并提出了一种解决方案,将操作员状态向量包括在系统中,使用混合定位性决策框架来驱动这种相互作用。
此详细案例报告探讨了氯胺酮辅助心理治疗(KAP)在30年代后期的男性患者治疗焦虑症(GAD)(GAD)和抑郁症状中的应用。N-甲基-D-天冬氨酸(NMDA)受体拮抗剂氯胺酮由于其快速且稳健的抗抑郁作用而在情绪和焦虑症的治疗中取得了显着突破。临床前研究表明,氯胺酮促进了大脑的生物学改变,包括增强神经可塑性。然而,迄今为止,还没有使用磁脑摄影(MEG)(一种强大的功能性神经影像学方式)检查了KAP的纵向效应。静止状态MEG(RSMEG)扫描允许探索与KAP相关的情绪和焦虑症状变化的神经相关性,包括参与认知和情绪调节的大脑网络之间的功能连通性。在本案例研究中,一个中等重度GAD的成年男性参与者在基线时进行了两次RSMEG扫描和认知测试,在6个标准氯胺酮给药和2个整合会议中的6次会议中有4个,其中一部分是一项协议的一部分,该协议总共包括6次KAP会话和四次集成。我们在5个功能网络中测量了功能连接性 - 默认模式,注意力,中央执行,运动和视觉以及神经振荡活动。我们看到5个网络中的4个中的功能连接增加。这与皮质β活性的显着增加相吻合,抑制作用的标志,theta振荡的降低,GAD7和PHQ9分数的降低以及提高了注意力。总而言之,这些发现强调了RSMEG检测KAP诱导的大脑网络变化的能力,提供了一种有希望的工具,用于识别临床相关的神经相关性,可以通过电生理学变化来预测和监测治疗结果。
prader-Willi综合征(PWS)是一种罕见的遗传状况,具有多方面的身体,行为和认知困难,其特征在于女性噬菌体和低执行功能。寻求食物的行为可能会受到荷尔蒙,认知和心理因素的调节,并被认为部分是由功能性脑异常介导的。Here, we used an experimental protocol integrating eyes opens resting state magnetoencephalography (MEG) - a high-resolution neurophysiological imaging technique - and neuropsychological profiling to understand the relationship between executive functioning, and intrinsic brain activity & functional connectivity in a prospective, cross-sectional cohort with PWS, and a sex-, age- and BMI-matched control group.我们观察到PWS中的执行功能较低,以及跨大脑同步的多个通道的功能障碍 - 换句话说,跨多个频段,介导了大脑网络内部和大脑网络之间的通信 - 视觉,注意力和默认模式网络中。此外,我们发现了PWS患者脑网络拓扑结构的“脑范围”变化,功能网络的“枢纽”增加,但中心性降低。然而,尽管存在中等效应大小(关联程度),但与神经心理学结果相关后,这些措施与神经心理学结局相关后都没有幸存下来的多重比较校正。这是第一项结合神经心理学和神经生理成像的研究,表明PWS中多个脑网络中的功能同步失调。
链接[1] https://www.healthcareers.nhs.uk/glossary#cardiopulonary [2] https://www.healthcareers.nhs.uk/glossary#respiratory [3] https://www.healthcareers.nhs.uk/glossary#physiology [5] https://www.healthcareers.nhs.uk/glossary#oncology [6] https://www.healthcareers.nhs.uk/glossary#Stroke [8] https://www.healthcareers.nhs.uk/explore- roles/healthcare-science/roles-healthcare-science/physiological-sciences/clinical-exercise- physiologist/real-life-story-oli-fiassam [9] https://www.healthcareers.nhs.uk/glossary#agenda_for_change [10] https://www.healthcareers.nhs.nhs.uk/glossary#afc [11] https://www.healthcareers.nhs.uk/glossary#pathophysiology [13] https://www.ahcs.ac.uk/equivalence/ [14] [16] https://www.bases.org.uk/ [17] https://www.healthcareers.nhs.uk/explore/explore/explore/healthcare-care-science/Roles-Roles-healthcare-healthcare-science/physiolocical/physiolocical/physiolocical/physiolocical-sciences/physiratory-phyphys-physiratory-physiratory-physiolatory-physiology and-sleep-sleep-sciences [18 18] https://www.healthcareers.nhs.uk/explore-reoles/healthcare-science/roles-healthcare-science/physiological-physiological-sciences/cardiac-sciences/cardiac-sciences [19] https://wwwww.healthcareers.nhs.nhs.uk/explore-plore-prore-prore-prore-prore-prore-prore-prore-prore-prore-prore--prore-prore--------------- [20] https://www.healthcareers.nhs.uk/explore-reoles/wider-healthcare-team/roles-wider-wider-healthcare- team/clinical-support-support-Science-science-science-science-science-assistant-and-assistant-and-sassistant-and-sassociate