糖尿病肾病(DKD)现在普遍存在糖尿病的主要并发症和终末期肾脏疾病的主要原因(1-3)。目前,用于管理DKD的疗法涉及血压和葡萄糖水平的调节,以及使用血管紧张素转化酶抑制剂(ACEI)和血管紧张素受体受体阻滞剂(ARB);然而,这些治疗方式在停止DKD的进步方面的有效性受到限制(4,5),强调了预防和管理DKD发展的巨大挑战。DKD的发展和进展受到多种因素的影响。遗传变异和延长的高血糖状态会激活加剧肾脏损伤的细胞途径(6)。同时,慢性炎症可以进一步扩大这种损害,最终为重大的肾脏损害奠定了基础(6,7)。还认为胰岛素抵抗与DKD的临床症状有关,可能是DKD组织学特征的根本原因之一(8)。越来越多的研究表明,胰岛素抵抗在DKD的发展和发展中起重要作用(9-11)。胰岛素抵抗可以在慢性肾脏疾病的早期阶段鉴定,其强度随着肾功能恶化而升级(12,13)。 胰岛素抵抗通常与甘油三酸酯水平升高和血液中的空腹葡萄糖有关。 发生胰岛素抵抗时,胰岛素的正常生理作用会受到阻碍,从而导致血糖水平升高。胰岛素抵抗可以在慢性肾脏疾病的早期阶段鉴定,其强度随着肾功能恶化而升级(12,13)。胰岛素抵抗通常与甘油三酸酯水平升高和血液中的空腹葡萄糖有关。发生胰岛素抵抗时,胰岛素的正常生理作用会受到阻碍,从而导致血糖水平升高。同时,胰岛素抵抗会影响脂肪组织的功能,增强脂解,从而提高血液中甘油三酸酯水平。因此,被计算为禁食甘油三酸酯和葡萄糖的对数的甘油三酸酯葡萄糖(TYG)指数,试图提供一种简单有效的定量措施,以反映个人的胰岛素抵抗水平。通过整合这两个指标,TYG指数提供了一种评估胰岛素抵抗的实用工具(14,15)。尽管高胰岛素葡萄糖夹检验是评估胰岛素抵抗的金标准方法,但该技术对
脊髓损伤 (SCI) 是一种与缺氧缺血和炎症有关的严重中枢神经系统 (CNS) 损伤疾病。其特征是过量活性氧 (ROS) 生成、神经细胞氧化损伤和线粒体功能障碍。线粒体是 ROS 的主要细胞来源,其中氧化磷酸化中的电子传递链复合物经常遇到电子泄漏。这些泄漏的电子与分子氧发生反应,产生 ROS,最终导致氧化应激的发生。氧化应激是 SCI 后常见的继发性损伤形式之一。线粒体氧化应激可导致线粒体功能受损并破坏细胞信号转导途径。因此,恢复线粒体电子传递链 (ETC)、减少 ROS 生成和增强线粒体功能可能是治疗 SCI 的潜在策略。本文主要探讨线粒体氧化应激在脊髓损伤中的病理生理作用,并详细评估各种针对线粒体的抗氧化疗法(包括药物和非药物疗法)对脊髓损伤的神经保护作用,以期为脊髓损伤领域的未来研究提供有价值的见解和参考。
每年,全世界有超过1500万人患有中风,这种情况与高死亡率和残疾率有关。这种疾病严重影响日常生活,损害日常功能,执行功能和认知。中风严重限制了患者进行日常活动的能力,从而降低了他们的整体生活质量。最近的科学研究已经确定了一种新发现的细胞死亡形式,是中风发育的关键因素。然而,研究人员尚不清楚库pro的作用在中风中的作用尚不清楚。因此,研究中风的发病机理中的库pro吞作用机制至关重要。本综述研究了铜的生理作用,库碎屑的特征和机制,库糖毒和其他细胞死亡类型之间的差异和相似性,以及中风中蛋白库的病理生理学,重点是线粒体功能障碍和免疫炎性。进一步的研究对于了解以前的中风与库糖凋亡之间的关系,并阐明这些关联背后的机制。
G 蛋白偶联受体 (GPCR) 形成一个质膜受体超家族,可与四种主要的异三聚体 G 蛋白家族 G s 、 G i 、 G q 和 G 12 偶联。GPCR 是药物治疗的极佳靶点。由于各个 GPCR 由许多不同类型的细胞表达,因此特定细胞类型表达的特定 GPCR 的体内代谢作用尚不清楚。设计 GPCR 被称为 DREADD(仅由设计药物激活的设计受体),可选择性地与不同类别的异三聚体 G 蛋白偶联,极大地促进了该领域的研究。本综述重点介绍如何使用 DREADD 技术探索不同 GPCR/G 蛋白级联在几种代谢重要的细胞类型中的生理和病理生理作用。从这些研究中获得的新见解应促进基于 GPCR 的治疗方法的开发,以治疗 2 型糖尿病和肥胖症等主要代谢疾病。
心血管疾病(CVD)是全球发病率和死亡率的主要原因之一,继续寻找新型治疗剂对于应对这一全球健康挑战至关重要。在过去十年中,硫化氢(H₂S)在医学研究领域引起了极大的关注,因为它已被证明是心脏保护气体信号分子。它以内源产生的燃气递质加入一氧化氮和一氧化碳。至于其机制,H₂S通过在称为硫化的过程中对靶蛋白上的半胱氨酸残基的翻译后添加到半胱氨酸残基来发挥作用。因此,观察到的H₂S的生理作用包括血管舒张,抗凋亡,抗炎,抗氧化作用以及离子通道的调节。各种研究都观察到H₂S在心肌梗塞,缺血 - 重新灌注损伤,心脏重塑,心力衰竭,心律失常和动脉粥样硬化等疾病中的心脏保护益处。在这篇综述中,我们讨论了各种CVD中H₂的机制和治疗潜力。
phlorizin:一种可逆的肾糖尿病的实验模型约瑟夫·弗里德里希·弗里德里尔(Joseph Friedrich Freiherr),男爵冯·梅林(Baron von Mering)(1849-1908),出生于德国科隆的崇高家族[1,2]。1885年,冯·梅林(Von Mering)在斯特拉斯堡(Strasbourg)研究了腓洛依肽在狗中的生理作用[7-9]。von Mering在口服后发现了葡萄糖疗法,但也通过注射磷酸素[7-9]。在1886年,冯·梅林(Von Mering)还指出,磷酸蛋白的给药减少了狗的血糖[7-9]。他推测:“该物质可以通过在肾脏中改变某些东西来诱导糖尿。”然后,冯·梅林(von Mering)以每天2 g的剂量将菲洛依(phlorizin)施用,持续一个月。他每天获得91 g [1-2]的糖尿病。葡萄糖尿可以抑制磷酸蛋白。von Mering随后报道说,每天以15至20 g的剂量给予正常受试者的腓洛依蛋白会导致每日6至8 g/100 mL的糖尿病,而不会影响其一般状况[1-2]。
摘要:本文介绍了褪黑激素与神经发育障碍之间的关系的回顾。首先,褪黑激素的抗氧化特性及其生理作用被认为可以更好地理解褪黑激素在典型和非典型神经发育中的作用。然后,在婴儿期期间发生的几种神经发育疾病,例如自闭症谱系障碍或与自闭症相关的神经遗传疾病(包括史密斯 - 玛格尼斯综合症,安吉尔曼综合症,雷特综合征,结节性硬化症或威廉姆斯综合症或威廉姆斯 - 伯伦综合症)和新的疾病疾病,后来又是伊斯特氏症,后来又是伊斯特氏症,以后再发生讨论了有关褪黑激素的产生和昼夜节律受损的讨论,尤其是睡眠 - 唤醒节奏。本文讨论了在这些不同的心理状况中通常观察到的重叠症状的问题,并辩论了褪黑激素生产异常的作用,并改变了昼夜节律在病理生理学和这些神经发育障碍的行为表达中的作用。
矿物营养:基本元素,宏观和微量营养素;元素本质的标准;基本要素的作用;离子跨细胞膜的运输,主动和被动传输载体,韧皮部韧皮部植物的易位,束缚实验;压力流模型;韧皮部负载和卸载酶:结构和特性;酶催化和酶抑制的机制。光合作用:光合色素(Chl A,B,Xanthophylls,胡萝卜素);光系统I和II,反应中心,天线分子; ATP合成的电子传输和机制; C3,C4和碳固定的CAM途径;光呼吸。呼吸:糖酵解,厌氧呼吸,TCA循环;氧化磷酸化,乙氧基化,氧化戊糖磷酸途径。氮代谢:生物氮固定;硝酸盐和氨气同化。植物生长调节剂:生长素,gibberellins,cytokinins,aba,乙烯的发现和生理作用。植物对光和温度的反应:光周期(SDP,LDP,日中性植物);植物色素(发现和结构),对光形态发生的红光反应;春化。-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
摘要有丝分裂脱乙酰酶复合物 (MiDAC) 是一种最近发现的组蛋白脱乙酰酶 (HDAC) 复合物。虽然其他 HDAC 复合物与神经发生有关,但 MiDAC 的生理作用仍然未知。在这里,我们表明 MiDAC 是神经分化的重要调节器。我们证明 MiDAC 可作为神经发育基因表达程序的调节器,并与神经突生长的重要调节器结合。MiDAC 通过一种暗示启动子和增强子上 H4K20ac 去除的机制上调促神经基因(例如编码分泌配体 SLIT3 和 NETRIN1 (NTN1) 的基因)的表达。相反,MiDAC 通过减少神经发生负调节因子的启动子近端和远端元件上的 H3K27ac 来抑制基因表达。此外,MiDAC 的缺失会导致神经突生长缺陷,可以通过补充 SLIT3 和/或 NTN1 来挽救。这些发现表明 MiDAC 在调节 SLIT3 和 NTN1 信号轴的配体以确保神经突发育的正确完整性方面发挥着至关重要的作用。
Coxsackievievirus和腺病毒受体(CAR)是单个跨膜细胞粘附分子(CAM)。汽车在包括大脑,心脏,肺和睾丸在内的许多哺乳动物组织中表达。在上皮细胞中,CAR函数是众多CAM的典型作用的典型代表。然而,在大脑中,汽车的多个角色了解不足。更好地了解汽车在成人大脑中的生理作用,表征其位置是提高我们对其功能知识的原始步骤。此外,CAR还负责犬腺病毒2(CAV-2)载体的附着,内部化和逆行运输,这些载体在神经元电路的映射和基因转移中发现了一个细分市场,以治疗和对神经退行性疾病进行建模。在这项研究中,我们使用免疫组织化学和免疫荧光来记录汽车在健康的年轻小鼠大脑中的全球位置。在全球范围内,我们发现汽车是通过脑实质中的成熟和成熟的神经元表达的,位于躯体和投影上。虽然CAR偶尔与神经胶质酸性蛋白共定位,但该重叠仅限于与成人神经发生相关的区域。