使用穿透式细胞外多通道电极阵列(通常称为神经探针)记录神经元活动是探测神经元活动最广泛的方法之一。尽管有大量可用的细胞外探针设计,但尖峰分类软件要求的电极通道顺序和相对几何形状的映射这一耗时过程总是留给最终用户。因此,这个手动过程容易出现错误映射,进而导致不良的尖峰分类误差和效率低下。在这里,我们介绍了 ProbeInterface,这是一个开源项目,旨在通过消除在尖峰分类之前手动进行探针映射的步骤来统一神经探针元数据描述,以分析细胞外神经记录。ProbeInterface 首先是一个 Python API,使用户能够以任何所需的复杂度级别创建和可视化探针和探针组。其次,ProbeInterface 有助于以可重现的方式生成任何特定数据采集设置的全面接线描述,这通常涉及使用记录探头、探头、适配器和采集系统。第三,我们与探头制造商合作编译了一个可用探头的开放库,可以使用我们的 Python API 在运行时下载。最后,使用 ProbeInterface,我们定义了一种用于探头处理的文件格式,其中包含 FAIR 探头描述的所有必要信息,并且与神经科学中的其他开放标准兼容且互补。
神经可塑性是指大脑响应内部和外部刺激而改变和适应的能力。通过改变神经元或神经胶质细胞的数量、形成新的回路、加强或削弱特定突触、改变树突棘的数量和/或其他机制,神经可塑性有助于突触强度的动态和适应性变化 [1][2]。然而,神经可塑性的受损与精神和神经系统疾病的发展有关,包括抑郁症样疾病 [3][4]。事实上,重度抑郁症 (MDD) 患者的神经发生和突触可塑性降低 [3]。其他研究表明,在患有 MDD 的个体中观察到神经可塑性异常 [4]。神经可塑性降低可归因于表观遗传机制对参与突触可塑性的基因的转录调控 [4]。这种损伤对与 MDD 相关的认知和情感症状的发展有显著影响 [3]。诱导或利用神经可塑性已成为一种有前途的治疗方法,可以抵消这些适应不良的影响并缓解症状 [3]。开发刺激神经可塑性的新方法可能是补充目前针对神经可塑性的精神疾病疗法的有效方法。然而,仍然需要进一步研究神经可塑性如何促进精神疾病的发展。尽管如此,确定神经可塑性在精神疾病中是如何被调节和改变的,对于开发针对神经可塑性潜在异常的治疗方法是必要的 [3]。
在无脊椎动物中,免疫启动是个体根据先前的免疫学经验增强其免疫反应的能力。由于宿主自然栖息地中寄生虫反复感染的风险,这种适应性的免疫力可能会演变。免疫启动的表达在宿主和病原体种类以及感染途径(口腔或伤口)之间各不相同,反映了最终调节的进化调整。粉虫甲虫(Tenebrio molitor)的证据表明,革兰氏阳性细菌病原体在全身感染后的免疫启动中起着重要作用。尽管天然细菌病原体在T. molitor中可能会口服感染,但仍在争论是否摄入受污染的食物会导致全身感染,以及目前未知口服免疫启动。我们首先试图通过将其暴露于被活或死革兰氏阳性和革兰氏阴性细菌病原体污染的食物中,以诱导t. molitor幼虫和成年人的免疫启动。我们发现,口腔摄入活细菌没有杀死它们,但是化粪池的伤口导致死亡率迅速。有趣的是,死亡或活细菌的消耗不能防止再感染,与受伤引起的启动形成对比。我们进一步研究了用各种活细菌病原体感染食物对幼虫中食物消耗,质量增益和粪便产量等变量的影响。这表明革兰氏阳性细菌的口腔污染诱导了行为反应和蠕动防御机制,即使此处未观察到免疫启动。我们发现,与用革兰氏阴性细菌或对照食物暴露于受污染的食物相比,在食物中暴露于革兰氏阳性细菌的幼虫减少了质量和/或产生更多的粪便。考虑到口腔感染既没有引起昆虫死亡,也没有引起启动引起启动,因此我们认为T. molitor中的免疫启动可能主要是作为对与伤口相关的感染风险而不是口腔摄入而不是口腔摄入的反应。
1型糖尿病(T1D)是一种复杂的代谢自身免疫性疾病,会影响全球数百万个个体,并且通常会导致显着的合并症。然而,自身免疫和疾病发作的精确触发因素仍未完全阐明。本综合观点文章综合了基因环境相互作用在T1D病理生理学中的累积作用。遗传学在T1D易感性中起着显着的作用,特别是在主要的组织相容性复合物(MHC)基因座和组织蛋白酶H(CTSH)基因座。除了遗传学外,环境因素(例如病毒感染,农药暴露和肠道微生物组的变化)与T1D的发展有关。肠道微生物组的改变会影响粘膜完整性和免疫耐受性,从而通过分子模仿和调节肠道免疫系统来增加肠道渗透性,从而通过自身免疫性诱导增加T1D的风险。HLA II类单倍型对T1D发病率有已知作用可能与肠道微生物组的变化直接相关,但恰恰是肠道微生物组的影响如何变化,以及这些变化如何引起T1D需要进一步研究。假设这些基因环境相互作用通过表观遗传学变化(例如DNA甲基化和组蛋白修饰)提高对T1D的敏感性,从而依次改变了基因表达。有必要确定针对这些表观遗传修饰的新干预措施的有效性,例如“ Epidrugs”,这将为T1D有效管理提供新的途径,从而改善受影响的个体的生活质量及其家人及其家人/护理人员。
本文档的重点是人类解剖与生理学中的科学核心思想。在阿肯色州K-12科学标准中,科学内容可在每个标准的DCI部分中找到。三维学习和评估最佳的学生为学生做好了准备,以便学生有机会展示他们在科学领域所知道的和可以做的事情。请参阅完整的标准文档,以找到每个标准的相应科学和工程实践以及横切概念。核心思想被组织成以下科学领域:
糖尿病是一种以高血糖为特征的碳水化合物代谢异常的疾病。它与胰岛素分泌中的相对或绝对损伤有关,以及对胰岛素作用的不同程度的外围耐药性。糖尿病估计会影响全球5.37亿成年人,在20至79岁的成年人中,全球患病率为10.5%(1)。糖尿病是我们时代最严重,最常见的慢性疾病之一,导致威胁生命的并发症。在这些并发症中,中风是最公认和最常见的。中风是一种疾病,患病率很高,残疾,高死亡率和高复发率。成人男女中风的终生风险约为25%(2)。全球,中风是死亡率的第二大最常见原因,也是第二大最常见的残疾原因(3)。糖尿病会影响33%的缺血性中风患者,其中26%的出血性中风患者(4)。对102项前瞻性研究的新兴风险因素协作荟萃分析,其中850万人的随访表明糖尿病增加了缺血性中风2.27倍(5)。糖尿病不仅会影响中风的发作,而且还与中风结果的预后有关。糖尿病是中风复发的风险加倍,并增加了缺血性中风后死亡或残疾的风险(6)。中风后的糖尿病患者在有利的结果中具有25%的诱因,例如能够在日常生活的活动中独立发挥作用(7)。此外,据报道,糖尿病与2.56倍(8)后,中风后患上认知障碍和痴呆症的风险增加有关。糖尿病本身增加了活性氧的产生,促进了浮游剂过程。这些是加速关节炎和血栓形成风险增加的考虑的机制,最终导致缺血性中风的发作(7,9)。因此,在这个特刊中,“糖尿病在内分泌学领域的病理生理学和缺血性中风预后的作用”,我们专注于病因,病理学,治疗,中风的预后的作用。
摘要。在这篇 Outlook 论文中,我们解释了为什么当通过使用系统生理增强功能性近红外光谱 (SPA-fNIRS) 同时测量系统生理活动(例如心肺和自主神经活动)时,可以促进对功能性近红外光谱 (fNIRS) 神经成像信号的准确生理解释。SPA-fNIRS 的基本原理有两个方面:(i) SPA-fNIRS 能够更完整地解释和理解在头部测量的 fNIRS 信号,因为它们包含源自神经血管耦合和系统生理源的成分。用 SPA-fNIRS 测量的全身生理信号可用于回归 fNIRS 信号中的生理混杂成分。因此可以最大限度地减少误解。(ii) SPA-fNIRS 能够通过将大脑与整个身体的生理状态联系起来来研究具身大脑,从而对它们复杂的相互作用产生新的见解。我们预计 SPA-fNIRS 方法在未来将变得越来越重要。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。全部或部分分发或复制本作品需要完全注明原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.9.3.030801]
人类是一种社会性物种,在以目标为导向的合作过程中会进行复杂的互动。1 社会认知是此类互动的基础,包括三个主要组成部分:模拟、共情和心理化。标准的模拟概念是指一种功能过程,在此过程中,观察者试图自发地(甚至借助想象力)重现另一个人的相同心理状态。2 首先,Gallese 3 将社会认知归因于一种能够立即理解的具身模拟,并且与镜像神经元系统相关,即在执行有意动作(如运动动作)和观察相同动作时激活的神经系统。研究表明,6 个月大儿童在观察动作时运动皮层会被激活。4、5 第二个组成部分是共情,即分享感受和情感的能力。6 它是自动的,每个人都不一样,并且根据观察者与被观察者的关系类型而有所不同。 7、8 第三,心理化是社会认知的重要组成部分,是解读他人心理状态(如欲望、信仰和意图)的能力。9-11
通过将症状曲线与其相关的时间同步胃振幅曲线进行比较,确定了感应性的,活性和冬季表型。由于每个患者都报告了多种症状,因此将将单个胃振幅曲线与五个不同的症状严重性曲线进行比较。可能由于过度的运动伪像,胃a振幅曲线可能会自动消除胃容过算法算法的缺失值。在这种情况下,相应的时间点也从症状严重性曲线中删除,因为在一个数据中缺少数据的情况下,这两条曲线无法比较这两条曲线。此外,这三种表型仅适用于振幅和症状严重程度曲线有足够差异的情况。例如,如果患者报告在11点李克特量表上最多变化了1点,则可能不会被认为是症状的足够重大变化,无法评估其与胃活动的关系。正式地,我们仅在振幅曲线的标准偏差为>10μV并且症状严重程度曲线的标准偏差> 0.5时才确定症状/振幅关联表型。
根据世界卫生组织的说法,全球约有5%的成年人患有临床抑郁症,在印度,大约是4.5%的人。 口服药物是针对抑郁症的常见治疗方法。 但是,在第一次试验中,有一半以上的治疗方法对药理治疗策略没有响应,可能需要使用其他药物进行切换或增强。 在更快的时间表中,需要精确模型来达到个性化的治疗策略。 使用临床信息以及脑电图(EEG)数据显示出一些早期模型,显示出良好的表现,可以预测抑郁症的早期治疗结果。 然而,这些研究所确定的关键特征,包括抑郁症患者的差异额叶theta功率和额叶α不对称的存在,由于可解释性和稳健性的矛盾,近期挑战:当theta和alpha频率信号被嘲笑时,与他们的周期性成分相关,并不是在其质量成分的情况下,估计的估计并不是在其periodigic组成部分。 另一方面,许多早期研究已经报道了抑郁症的肠道异常,但尚未用于抑郁症的预测或预后。 我们的研究目标是双重的:首先确定可以早期预测治疗结果的特征,并为不同的患者亚组解释它们,其次是了解纵向数据收集和肠脑相互作用的实用性,以预测治疗结果。根据世界卫生组织的说法,全球约有5%的成年人患有临床抑郁症,在印度,大约是4.5%的人。口服药物是针对抑郁症的常见治疗方法。 但是,在第一次试验中,有一半以上的治疗方法对药理治疗策略没有响应,可能需要使用其他药物进行切换或增强。 在更快的时间表中,需要精确模型来达到个性化的治疗策略。 使用临床信息以及脑电图(EEG)数据显示出一些早期模型,显示出良好的表现,可以预测抑郁症的早期治疗结果。 然而,这些研究所确定的关键特征,包括抑郁症患者的差异额叶theta功率和额叶α不对称的存在,由于可解释性和稳健性的矛盾,近期挑战:当theta和alpha频率信号被嘲笑时,与他们的周期性成分相关,并不是在其质量成分的情况下,估计的估计并不是在其periodigic组成部分。 另一方面,许多早期研究已经报道了抑郁症的肠道异常,但尚未用于抑郁症的预测或预后。 我们的研究目标是双重的:首先确定可以早期预测治疗结果的特征,并为不同的患者亚组解释它们,其次是了解纵向数据收集和肠脑相互作用的实用性,以预测治疗结果。口服药物是针对抑郁症的常见治疗方法。但是,在第一次试验中,有一半以上的治疗方法对药理治疗策略没有响应,可能需要使用其他药物进行切换或增强。在更快的时间表中,需要精确模型来达到个性化的治疗策略。使用临床信息以及脑电图(EEG)数据显示出一些早期模型,显示出良好的表现,可以预测抑郁症的早期治疗结果。然而,这些研究所确定的关键特征,包括抑郁症患者的差异额叶theta功率和额叶α不对称的存在,由于可解释性和稳健性的矛盾,近期挑战:当theta和alpha频率信号被嘲笑时,与他们的周期性成分相关,并不是在其质量成分的情况下,估计的估计并不是在其periodigic组成部分。另一方面,许多早期研究已经报道了抑郁症的肠道异常,但尚未用于抑郁症的预测或预后。我们的研究目标是双重的:首先确定可以早期预测治疗结果的特征,并为不同的患者亚组解释它们,其次是了解纵向数据收集和肠脑相互作用的实用性,以预测治疗结果。大约有161名参与者(幼稚的患者= 99)注册了我们的纵向研究,涵盖了三次访问,我们的目的是调查访问1(基线)和访问2(7-10天内)是否可以预测3(30天后)中的抗抑郁治疗结果。在消耗后,在访问2(患者= 42)中收集了来自89名参与者的脑电图和电视画学数据,在访问中收集61个参与者(患者= 21)。我们在大脑和肠道中使用电生理特征以及临床数据来训练简单的预测模型,并且能够可靠地预测特异性为78%和灵敏度为84%的抑郁药物的无反应。对治疗结果的重要特征进行了排名,完全为临床医生提供了可扩展的全身认知工具,用于指导其药物策略。