摘要。多刺龙虾,Panulirus homarus,是水产养殖中具有重要经济价值的一种物种。这项研究研究了生长相关(生长激素/GH和甲壳类高血糖激素/CHH)和免疫系统相关(凝集素和苯酚氧化酶作为无活跃的促酶/蛋白酶/propo)基因的表达模式。了解这些模式对于提高水产养殖的生产力至关重要。基因表达在NAUPLISOMA阶段(0.003±0.0002 CHH,0.0084±0.0002 GH,0.003±0.001凝集素,0.0033±0.0009 Propo),在5 cm种子龙虾中最高(1.25±0.11 CHH,2.14 l. 0.14±0.533,0.14±0.533±0.14±0.8±,0.11 chH,0.14±0.14±0.8±, 1.62±0.24 propo)。这些发现表明,在定时免疫刺激施用方面的潜在应用以增强免疫力,以及制定与饲料补充剂,疾病管理和影响CHH和GH表达的环境因素有关的策略。这项研究提供了对homarus假单胞菌的生长和免疫发展的关键见解,为改善水产养殖实践铺平了道路。关键词:生产力,水产养殖,Nauplisoma,环境,发展。简介。多刺龙虾Panulirus homarus广泛分布在整个印度太平洋地区,在东非和印度尼西亚,人口密集(Berry 1974; Pollock 1993)。这是一种具有重要经济价值的物种,尤其是在越南和印度尼西亚,在那里进行了广泛的培养(Jones 2010)。P. homarus的水产养殖依赖于自然发生的大型后pueruli的收集,然后将其升至海洋笼中可销售的大小(Do Huu&Jones 2014)。然而,当前的文化实践是次优的,诸如营养不良和人满为患的问题导致了养殖种群的健康问题和严重死亡(Behringer等人,2012年)。甲壳类高血糖激素(CHH)在甲壳类动物的生命周期中起着至关重要的作用,从而显着影响其生长。它参与了碳水化合物的代谢,并抑制摩擦,生殖活性和渗透调节过程(Fanjul-Moles 2006; Lacombe等,1999)。chh诱导血淋巴中的高血糖和高脂血症,提供必要的葡萄糖和脂质,以满足龙虾器官和组织的能量需求(Kummer&Keller 1993)。
引言罗皮亚是世界上最广泛的鱼之一。尼罗农罗非鱼尼罗尼斯(Oreochromis niloticus)在所有市场中都被广泛接受,因为它由于其快速生长,高密度培养和疾病耐受性而被认为是所有罗非鱼种类中最重要的物种之一(El-Sayed,2006年)。在全球范围内,罗非鱼种植在过去十年中的发展非常快,以满足人类对动物蛋白的需求并减少营养差异。他们在全球培养的年增长率约为12.2%(Wang&Lu,2016年)。过去几十年来,几乎在亚洲和非洲的100个国家中,O. niloticus文化的全球范围迅速扩展(Gu等,2017)。罗非鱼是全球第二大养殖鱼类,由于其适合水产养殖,可销售性和稳定的市场价格,其生产在过去十年中已经三倍(FAO,2022年)。
摘要:首次系统地研究了通过高真空化学气相沉积从硼氮烷中生长六方氮化硼 (hBN) 在外延 Ge(001)/Si 衬底上的过程。分别评估了 10 − 7 –10 − 3 mba r 和 900–980 ◦ C 范围内的工艺压力和生长温度对 hBN 薄膜的形貌、生长速率和晶体质量的影响。在 900 ◦ C 下,获得了横向晶粒尺寸约为 2–3 nm 的纳米晶 hBN 薄膜,并通过高分辨率透射电子显微镜图像进行了确认。X 射线光电子能谱证实了原子 N:B 比为 1 ± 0.1。通过原子力显微镜观察到三维生长模式。增加反应器中的工艺压力主要影响生长速率,对晶体质量的影响很小,对主要生长模式没有影响。在 980 ◦ C 下生长 hBN 会增加平均晶粒尺寸,并在 Ge 表面形成 3-10 个取向良好、垂直堆叠的 hBN 层。探索性从头算密度泛函理论模拟表明,hBN 边缘被氢饱和,并且有人提出,在装置的热部件上产生的 H 自由基部分去饱和是导致生长的原因。
今天的背景和基本原理比以往任何时候都更加重要,食品和营养安全的作物生产增加取决于对自然资源的明智使用。此外,气候变化,气候变化,极端天气,土壤碳固存,生物燃料,环境可持续性和温室气体排放已成为全球问题。基于动态作物模拟模型的系统分析方法可以为确定作物反应的过程的理解以及预测作物性能,资源使用和环境对不同环境条件,管理场景和植物遗传学的影响做出宝贵的贡献。以用户为导向的计算机模拟模型可以极大地促进优化作物生长并获得有关作物管理的建议的任务。也可以应用相同的模型来评估气候变化对农作物生产和长期土壤碳固存的潜在影响,并为可持续作物生产的气候变化适应提供管理方案。本课程的总体目标是使用动态作物模拟模型介绍农业系统的系统分析概念。具体目标是了解基因型的科学 *环境 *在建模框架中的管理交互,并应用作物模拟模型以帮助解决现实世界中的问题。
非常需要设计纳米颗粒表面形状的局部变化。这是因为这些修饰阳离子可以改善生物相容性和细胞摄取。23在这里,我们描述了一种在含核碱酶的多聚膜膜外表面形成局部变形的方法。我们表明,在插入包含互补核酶的二嵌段共聚物时,类似触手的节点可以在聚合物的表面形成(图1b)。与蓄水池一样,膜变形和随之而来的淋巴结形成依赖于不同的膜成分之间的互补氢键。将核碱酶配对的可编程性纳入自组装合成聚合物24 - 28先前已被利用以控制纳米颗粒形态,29 - 35瓶刷组件36和颗粒表面化学,37,以及37层的聚合,38,39货物货物40 - 42-42-42-42-42-42-42和增强的水。43
在主要类别的植物激素,生长素,gibberellins和cytokinins中广泛用于植物传播。这些激素会影响植物的生理和发育过程,例如根开始,顶端优势,种子发芽,叶片扩张以及芽,花朵和水果的发育。发现其外源应用可显着改善几种重要植物的生长。这项研究旨在确定植物生长调节剂(PGR)的有效性,这些调节剂(PGRS)来自自然存在的植物生长细菌(PGPB)在所选农作物的生产和传播中的有效性。在这项研究中,从天然存在的PGPB芽孢杆菌sp中提取吲哚 - 3-乙酸(IAA)和gaberellicac(GA)。提取的激素被纳米成型,以使植物中的受控释放和增加。将纳米成型激素应用于咖啡的繁殖以及茄子和装饰物的产生中。结果表明,与市售的生长素相比,纳米成型IAA(纳米-IAA)的应用显着提高了咖啡的存活率。纳米-IAA提高了酸性土壤中茄子的发芽率和九重奏在阴性对照(水)上的根源出现,但与市售的生长素相当。纳米制造的气体和市售
图2:QM区域中的单电子还原电位的变化,a)金原子,b)水分子和c)有机分子(核碱基 +接头)的变化。每个颜色线表示从MD轨迹获得的单个快照。面板b)还显示了当使用Cosmo隐式模型用作溶剂时,还显示了减少电势的值。d)与完整的QM/mm计算相比,添加剂方案的验证(请参阅文本)。
内生细菌存在于植物根部,有益于植物生长。该研究旨在评估内生细菌联合体在促进香蕉植株生长方面的应用,并确定在香蕉植株生长过程中最大程度地帮助营养利用的基因。将一个月大的香蕉植株浸泡在 500 毫升内生细菌悬浮液中一小时,接种疫苗。在印度尼西亚艾资哈尔大学的温室中进行了为期 40 天的体内观察,在此期间计算了形态和生理生长情况。结果显示,对照植株的生长速度低于用内生细菌处理的植株。使用内生细菌可促进香蕉植株的生长,叶长、叶宽、植株高度和叶绿素水平均有所改善。此外,对用 Cytobacillus depressus、Bacillus stratophericus 和 B. mycoides 处理的香蕉植株进行半定量分析,发现了对生长有显著贡献的基因。这些基因包括WRKY33、Ma03_92660、Ma01_901890、Ma04_936790和Pho-1,2,从实验第28天开始表现出最高表达水平。
摘要。妊娠糖尿病(GDM)是一种常见的妊娠并发症并发症,生长分化因子−15(GDF -15)参与了许多疾病。在此,本研究的目的是研究GDM患者血清GDF -15水平的水平和临床意义。根据GDM的存在或不存在,选择了妊娠20-24周的237名孕妇,并分配给正常妊娠组(70例患者)和一个GDM组(167例患者)。收集了两组的一般临床数据。空腹血糖,1 − H血糖,2 h血浆葡萄糖,糖化血红蛋白,空腹胰岛素,24 − H尿白蛋白和血清GDF -15水平。结果表明,GDM组的体重指数(BMI)高于正常妊娠组的体重指数。Fasting plasma glucose, 1‑h plasma glucose, 2‑h plasma glucose, fasting insulin, glycated hemoglobin and GDF‑15 levels and the positive rate of microalbuminuria were significantly higher in the GDM group compared with the normal pregnancy group.GDF -15水平与BMI,空腹血糖,糖化血蛋白,稳态模型评估胰岛素抵抗和禁食胰岛素水平正相关。逻辑回归分析表明,GDF -15级别升高是
摘要:微生物统治着我们星球的功能以及每个单个宏观生物生物。然而,微生物活动和生长状况一直是确定原位和体内的挑战。微生物活性通常与生长有关,而生长速率是由于微生物细胞在不断变化的环境中面临的充分或不良条件下养分的结果。大多数关于微生物的研究都是在最佳或接近最佳的生长条件下进行的,但是在缓慢生长状态下(即接近零生长和维持代谢),可获得有关微生物的稀缺信息。这项研究旨在更好地了解生长限制条件下的微生物。这有望提供有关微生物世界功能和相关性的新观点。这是因为(i)自然界中的微生物经常面临严重的生长限制的条件,(ii)微型生物激活奇异途径(主要是基因在功能上尚有注释),从而导致次生代谢物的广泛范围,以及(iii)(iii)在慢速的响应中,包括慢速的响应,包括慢速的依据,包括依赖的依据,包括依赖的策略,该策略依赖依据,依靠依据,依靠依据,依靠依据。人口和由于环境的复杂性。